820 research outputs found

    Recycling Nonmagnetic Material from De-sulferization Slag as Coarse Aggregate through Cold-Pressing Technique

    Get PDF
    Every year there was approximately 500,000 tons of de-sulferization slag generated in Taiwan, but the recycling amount was very slightly. A new approach, the cold-pressing technique that incorporates the principles of the cement chemistry and composite material was developed to recycle innocuous resources (e.g. construction residual soil, granite and lime sludge, and sediment, etc.) as recycling coarse aggregate. Even this technique also has successfully been applied to recycle stainless steel reductive slag with low volume stability. This paper aims to show that using cold-pressing technique can recycle nonmagnetic material from de-sulferization slag as coarse aggregate. Herein the cement-based composite is regarded as concrete. Particularly, the mixture proportions with a low cement amount of 100 kg/m3 and more than 70% (by weight) of nonmagnetic material from de-sulferization were designed. The test results show that the specific gravity of recycling coarse aggregate is about 1.67 in the OD state; the absorption capacity is 27.65%; the dry loose density (i.e. unit weight) is about 1,106 kg/m3; and other characteristics conform to ASTM C33. Therefore the cold-pressing technique is a new and practicable approach to recycle nonmagnetic material from de-sulferization slag in future

    Methyl (2′S,3′S)-3,4-O-(2′,3′-dimethoxy­butane-2′,3′-di­yl)-α-l-rhamnopyran­oside: a glycosyl acceptor

    Get PDF
    The title compound, C13H24O7, is the product of the ketalization of methyl l-(+)-rhamnopyran­oside with 2,3-butane­dione. It crystallizes with two mol­ecules in the asymmetric unit, which are connected by O—H⋯O hydrogen bonds. The C-3,4 diequatorial hydroxy groups of the methyl l-(+)-rhamnopyran­oside were protected, leaving the C-2 hydroxy group free. The l-(+)-rhamnopyran­oside and 2′,3′-dimethoxy­butane-2′,3′-diyl rings adopt chair conformations and all meth­oxy groups are in axial positions. The absolute configuration was assumed from the synthesis

    Correlation of virulence genes to clinical manifestations and outcome in patients with Streptococcus dysgalactiae subspecies equisimilis bacteremia

    Get PDF
    Background/PurposeStreptococcus dysgalactiae subsp. equisimilis (SDSE) is increasingly recognized as a human pathogen responsible for invasive infection and streptococcal toxic shock syndrome (STSS). The pathogen possesses virulence genes that resemble those found in Streptococcus pyogenes (GAS). We analyzed the association between these specific toxic genes, clinical presentations, and outcome in patients with SDSE infections.MethodsPatients (older than 18 years) with community-acquired invasive bacteremia caused by SDSE bacteremia who were undergoing treatment at China Medical University Hospital from June 2007 to December 2010 were included in this study. Multiplex polymerase chain reaction was performed to identify virulence genes of the SDSE isolates. Demographic data, clinical presentations, and outcome in patients with SDSE infections were reviewed and analyzed.ResultsForty patients with 41 episodes of SDSE bacteremia were reviewed. The median age of the patients with SDSE infection was 69.7 years; 55% were female and 78% had underlying diseases. Malignancy (13, 33%) and diabetes mellitus (13, 33%) were the most common comorbidities. The 30-day mortality rate was 12%. Compared with the survivors, the non-survivors had a higher rate of diabetes mellitus (80% vs. 26%), liver cirrhosis (60% vs.11%), shock (60% vs.17%), STSS (60% vs. 8%), and a high Pittsburgh bacteremia score >4 (40% vs. 6%). Most isolates had scpA, ska, saga, and slo genes, whereas speC, speG, speH, speI, speK, smez, and ssa genes were not detected. speA gene was identified only in one patient with STSS (1/6, 17%). All isolates were susceptible to penicillin, cefotaxime, levofloxacin, moxifloxacin, vancomycin, and linezolid.ConclusionIn invasive SDSE infections, most isolates carry putative virulence genes, such as scpA, ska, saga, and slo. Clinical SDSE isolates in Taiwan remain susceptible to penicillin cefotaxime, and levofloxacin

    Label-free quantitative proteomics of CD133-positive liver cancer stem cells

    Full text link
    Abstract Background CD133-positive liver cancer stem cells, which are characterized by their resistance to conventional chemotherapy and their tumor initiation ability at limited dilutions, have been recognized as a critical target in liver cancer therapeutics. In the current work, we developed a label-free quantitative method to investigate the proteome of CD133-positive liver cancer stem cells for the purpose of identifying unique biomarkers that can be utilized for targeting liver cancer stem cells. Label-free quantitation was performed in combination with ID-based Elution time Alignment by Linear regression Quantitation (IDEAL-Q) and MaxQuant. Results Initially, IDEAL-Q analysis revealed that 151 proteins were differentially expressed in the CD133-positive hepatoma cells when compared with CD133-negative cells. We then analyzed these 151 differentially expressed proteins by MaxQuant software and identified 10 significantly up-regulated proteins. The results were further validated by RT-PCR, western blot, flow cytometry or immunofluorescent staining which revealed that prominin-1, annexin A1, annexin A3, transgelin, creatine kinase B, vimentin, and EpCAM were indeed highly expressed in the CD133-positive hepatoma cells. Conclusions These findings confirmed that mass spectrometry-based label-free quantitative proteomics can be used to gain insights into liver cancer stem cells.http://deepblue.lib.umich.edu/bitstream/2027.42/113089/1/12953_2012_Article_407.pd

    Adipose-Derived Mesenchymal Stem Cell Protects Kidneys against Ischemia-Reperfusion Injury through Suppressing Oxidative Stress and Inflammatory Reaction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reactive oxygen species are important mediators exerting toxic effects on various organs during ischemia-reperfusion (IR) injury. We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs) protect the kidney against oxidative stress and inflammatory stimuli in rat during renal IR injury.</p> <p>Methods</p> <p>Adult male Sprague-Dawley (SD) rats (n = 24) were equally randomized into group 1 (sham control), group 2 (IR plus culture medium only), and group 3 (IR plus immediate intra-renal administration of 1.0 × 10<sup>6 </sup>autologous ADMSCs, followed by intravenous ADMSCs at 6 h and 24 h after IR). The duration of ischemia was 1 h, followed by 72 hours of reperfusion before the animals were sacrificed.</p> <p>Results</p> <p>Serum creatinine and blood urea nitrogen levels and the degree of histological abnormalities were markedly lower in group 3 than in group 2 (all p < 0.03). The mRNA expressions of inflammatory, oxidative stress, and apoptotic biomarkers were lower, whereas the anti-inflammatory, anti-oxidative, and anti-apoptotic biomarkers were higher in group 3 than in group 2 (all p < 0.03). Immunofluorescent staining showed a higher number of CD31+, von Willebrand Factor+, and heme oxygenase (HO)-1+ cells in group 3 than in group 2 (all p < 0.05). Western blot showed notably higher NAD(P)H quinone oxidoreductase 1 and HO-1 activities, two indicators of anti-oxidative capacity, in group 3 than those in group 2 (all p < 0.04). Immunohistochemical staining showed higher glutathione peroxidase and glutathione reductase activities in group 3 than in group 2 (all p < 0.02)</p> <p>Conclusion</p> <p>ADMSC therapy minimized kidney damage after IR injury through suppressing oxidative stress and inflammatory response.</p
    corecore