400 research outputs found

    Differential protection against oxidative stress and nitric oxide overproduction in cardiovascular and pulmonary systems by propofol during endotoxemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both overproduction of nitric oxide (NO) and oxidative injury of cardiovascular and pulmonary systems contribute to fatal cardiovascular depression during endotoxemia. We investigated in the present study the relative contribution of oxidative stress and NO to cardiovascular depression during different stages of endotoxemia, and delineated their roles in cardiovascular protective effects of a commonly used anesthetic propofol during endotoxemia.</p> <p>Methods</p> <p>Experimental endotoxemia was induced by systemic injection of <it>E. coli </it>lipopolysaccharide (LPS, 15 mg/kg) to Sprague-Dawley rats that were maintained under propofol (15 or 30 mg/kg/h, i.v.) anesthesia. Mean systemic arterial pressure (MSAP) and heart rate (HR) were monitored for 6 h after the endotoxin. Tissue level of NO was measured by chemical reduction-linked chemiluminescence and oxidative burst activity was determined using dihydroethidium method. Expression of NO synthase (NOS) was determined by immunoblotting. The Scheffé multiple range test was used for post hoc statistical analysis.</p> <p>Results</p> <p>Systemic injection of LPS (15 mg/kg) induced biphasic decreases in MSAP and HR. In the heart, lung and aorta, an abrupt increase in lipid peroxidation, our experimental index of oxidative tissue injury, was detected in early stage and sustained during late stage cardiovascular depression. LPS injection, on the other hand, induced a gradual increase in tissue nitrite and nitrate levels in the same organs that peaked during late stage endotoxemia. Propofol infusion (15 or 30 mg/kg/h, i.v.) significantly attenuated lipid peroxidation in the heart, lung and aorta during early and late stage endotoxemia. High dose (30 mg/kg/h, i.v.) propofol also reversed the LPS-induced inducible NO synthase (iNOS) upregulation and NO production in the aorta, alongside a significant amelioration of late stage cardiovascular depression and increase in survival time during endotoxemia.</p> <p>Conclusion</p> <p>Together these results suggest that oxidative injury and NO may play a differential role in LPS-induced cardiovascular depression. Oxidative tissue injury is associated with both early and late stage; whereas NO is engaged primarily in late stage cardiovascular depression. Moreover, propofol anesthesia may protect against fatal cardiovascular depression during endotoxemia by attenuating the late stage NO surge in the aorta, possibly via inhibition of iNOS upregulation by the endotoxin.</p

    Increased epithelial stem cell traits in advanced endometrial endometrioid carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been recognized cancer cells acquire characters reminiscent of those of normal stem cells, and the degree of stem cell gene expression correlates with patient prognosis. Lgr5(+) or CD133(+) epithelial stem cells (EpiSCs) have recently been identified and these cells are susceptible to neoplastic transformation. It is unclear, however, whether genes enriched in EpiSCs also contribute in tumor malignancy. Endometrial endometrioid carcinoma (EEC) is a dominant type of the endometrial cancers and is still among the most common female cancers. Clinically endometrial carcinoma is classified into 4 FIGO stages by the degree of tumor invasion and metastasis, and the survival rate is low in patients with higher stages of tumors. Identifying genes shared between advanced tumors and stem cells will not only unmask the mechanisms of tumor malignancy but also provide novel therapeutic targets.</p> <p>Results</p> <p>To identify EpiSC genes in late (stages III-IV) EECs, a molecular signature distinguishing early (stages I-II) and late EECs was first identified to delineate late EECs at the genomics level. ERBB2 and CCR1 were genes activated in late EECs, while APBA2 (MINT2) and CDK inhibitor p16 tumor suppressors in early EECs. MAPK pathway was significantly up in late EECs, indicating drugs targeting this canonical pathway might be useful for treating advanced EECs. A six-gene mini-signature was further identified to differentiate early from advanced EECs in both the training and testing datasets. Advanced, invasive EECs possessed a clear EpiSC gene expression pattern, explaining partly why these tumors are more malignant.</p> <p>Conclusions</p> <p>Our work provides new insights into the pathogenesis of EECs and reveals a previously unknown link between adult stem cells and the histopathological traits of EECs. Shared EpiSC genes in late EECs may contribute to the stem cell-like phenotypes shown by advanced tumors and hold the potential of being candidate therapeutic targets and novel prognosis biomarkers.</p

    Activation of Endothelial Cells by Antiphospholipid Antibodies—A Possible Mechanism Triggering Thrombosis in Patients with Antiphospholipid Syndrome

    Get PDF
    Antiphospholipid syndrome (APS) is an antibody-mediated hypercoagulable state characterized by recurrent venous and arterial thromboembolic events. The presence of serum antibodies are collectively termed as antiphospholipid antibodies (aPL) and is the hallmark of the disease. Interest in the pathogenesis has mostly been focused on the blood coagulation factor. However, endothelial cells might play an important role. When stimulated, cell membrane would flip to expose negatively charged phospholipids and activation markers such as adhesive molecules may appear. We consider that these changes may play an important role in the initiation of the thrombotic process when endothelial cells encounter aPL. In this study, we incubated human umbilical vein endothelial cells (HUVECs) with IgG isolated from patients with APS and found that the HUVECs were activated by the expression of negatively charged phospholipids, as shown by high annexin V binding and negative propidium iodide staining and by an increase in the level of intracellular cell adhesion molecule-1 on the cell surface. The above findings indicate that endothelial cells can be activated on exposure to aPL and trigger the thrombotic event

    Association of Chinese Herbal Medicine use with the depression risk among the long-term breast cancer survivors: A longitudinal follow-up study

    Get PDF
    Background Breast cancer patients are at elevated risk of depression during treatment, thus provoking the chance of poor clinical outcomes. This retrospective cohort study aimed to investigate whether integrating Chinese herbal medicines citation(CHM) into conventional cancer therapy could decrease the risk of depression in the long-term breast cancer survivors. Methods A cohort of patients aged 20–70 years and with newly diagnosed breast cancer during 2000–2008 was identified from a nationwide claims database. In this study, we focused solely on survivors of breast cancer at least1 year after diagnosis. After one-to-one matching for age, sex, and baseline comorbidities, breast cancer patients who received (n = 1,450) and did not receive (n = 1,450) CHM treatment were enrolled. The incidence rate and hazard ratio citation(HR) for depression between the two groups was estimated at the end of 2012. A Cox proportional hazard model was constructed to examine the impact of the CHM use on the risk of depression. Results During the study period, the incidence rate of depression was significantly lower in the treated cohort than in the untreated cohort [8.57 compared with 11.01 per 1,000 person-years citation(PYs)], and the adjusted HR remained significant at 0.74 (95% CI 0.58–0.94) in a Cox proportional hazards regression model. The corresponding risk further decreasing to 43% among those using CHM for more than 1 year. Conclusion Finding from this investigation indicated that the lower risk of depression observed in breast cancer patients treated with CHM, suggesting that CHM treatment should be considered for disease management toward breast cancer. Yet, the optimal administered dose should be determined in further clinical trials

    Sumoylation of Hypoxia-Inducible Factor-1α Ameliorates Failure of Brain Stem Cardiovascular Regulation in Experimental Brain Death

    Get PDF
    One aspect of brain death is cardiovascular deregulation because asystole invariably occurs shortly after its diagnosis. A suitable neural substrate for mechanistic delineation of this aspect of brain death resides in the rostral ventrolateral medulla (RVLM). RVLM is the origin of a life-and-death signal that our laboratory detected from blood pressure of comatose patients that disappears before brain death ensues. At the same time, transcriptional upregulation of heme oxygenase-1 in RVLM by hypoxia-inducible factor-1α (HIF-1α) plays a pro-life role in experimental brain death, and HIF-1α is subject to sumoylation activated by transient cerebral ischemia. It follows that sumoylation of HIF-1α in RVLM in response to hypoxia may play a modulatory role on brain stem cardiovascular regulation during experimental brain death.A clinically relevant animal model that employed mevinphos as the experimental insult in Sprague-Dawley rat was used. Biochemical changes in RVLM during distinct phenotypes in systemic arterial pressure spectrum that reflect maintained or defunct brain stem cardiovascular regulation were studied. Western blot analysis, EMSA, ELISA, confocal microscopy and immunoprecipitation demonstrated that drastic tissue hypoxia, elevated levels of proteins conjugated by small ubiquitin-related modifier-1 (SUMO-1), Ubc9 (the only known conjugating enzyme for the sumoylation pathway) or HIF-1α, augmented sumoylation of HIF-1α, nucleus-bound translocation and enhanced transcriptional activity of HIF-1α in RVLM neurons took place preferentially during the pro-life phase of experimental brain death. Furthermore, loss-of-function manipulations by immunoneutralization of SUMO-1, Ubc9 or HIF-1α in RVLM blunted the upregulated nitric oxide synthase I/protein kinase G signaling cascade, which sustains the brain stem cardiovascular regulatory machinery during the pro-life phase.We conclude that sumoylation of HIF-1α in RVLM ameliorates brain stem cardiovascular regulatory failure during experimental brain death via upregulation of nitric oxide synthase I/protein kinase G signaling. This information should offer new therapeutic initiatives against this fatal eventuality

    Serum lipid level is not associated with symptomatic intracerebral hemorrhage after intravenous thrombolysis for acute ischemic stroke

    Get PDF
    Background This study assessed whether serum lipid levels are associated with the risk of symptomatic intracerebral hemorrhage (sICH) and functional outcomes in patients with acute ischemic stroke after receiving intravenous thrombolysis. Methods We retrospectively analyzed consecutive ischemic stroke patients who were treated with intravenous tissue plasminogen activator between January 2007 and January 2017. Lipid levels on admission, including total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglyceride levels, as well as potential predictors of sICH were tested using univariate and multivariate analyses. Results Of the 229 enrolled patients (100 women, aged 68 ± 13 years), 14 developed sICH and 103 (45%) had favorable functional outcomes at 3 months. The patients with sICH more often had diabetes mellitus (71% vs. 26%, P = 0.01) and had more severe stroke (mean National Institutes of Health Stroke Scale [NIHSS] score of 16 vs. 13, P = 0.045). Regarding lipid subtype, total cholesterol, LDL-C, HDL-C, and triglyceride levels were not associated with sICH or functional outcomes. According to the results of multivariate analysis, the frequency of sICH was independently associated with diabetes mellitus (odds ratio [OR] = 6.04; 95% CI [1.31–27.95]; P = 0.02) and the NIHSS score (OR = 1.12; 95% CI [1.02–1.22]; P = 0.01). A higher NIHSS score was independently associated with unfavorable functional outcomes (OR = 0.86; 95% CI [0.81–0.91]; P < 0.001). Conclusions Serum lipid levels on admission, including total cholesterol, LDL-C, HDL-C, and triglyceride levels, were not associated with sICH or 3-month functional outcomes after intravenous thrombolysis for acute ischemic stroke
    • …
    corecore