1 research outputs found
[[alternative]]Using Exploratory Data Analysis Approach to develop Cardiovascular Disease Prognosis Models for Clinical Decision Assistance
[[abstract]]本研究是以心臟血管疾病為範圍,針對資料探勘中的分類問題做為研究主軸,希望以探索性資料分析技術,發展出一套合理與有效的臨床輔助預知模型(Prognosis model)。方法為:使用子集合屬性選擇(subset attribute selection)演算法做為特徵選取,以基本模型(base model)方法與集成方法(ensemble methods)的計算結果做比較。當中,基礎模型,選擇以人工智慧類神經網路(Artificial Neural Network)、支援向量機(Support Vector Machine)、決策樹(Decision Tree)等方法為主。接著以組合異質模型的方式,來建立心臟血管疾病術後的預測模型。研究結果為:發展出之模型在準確度,或者是AUC(Area under the Receiver Operating Characteristic curve)上,有顯著之效能改善。結論為:本研究所建構出的預知模型,用於心臟血管疾病診斷來說,具有良好自動化之預期效能。其可應用於決策支援系統,用於提供外科醫師作為診斷預測術後的併發症(Como3)、術後病人在加護病房的時間(T_ICU)、術後住院時間(Length of hospital stay)、術後第1次心臟超音波檢查的左心室功能(Echo 2 Lvef)、術後心臟的分類等級(Alive_Fc)的參考。[[abstract]]This study focuses on using exploratory data analysis to develop cardiovsacular disease prognosis models for making clinical decisions. Method: used the subset attribute selection as the feature selection algorithm, and compared the prognosis models performance by using base model methods and ensemble methods. For the basic models, we choose Artificial Network Neural intelligence (ANN), Support Vector Machine (SVM), and Decision Tree (DT) as the main test models; followed by using ensemble method to build a prediction model for post-operative cardiovascular surgery. The results have shown significant improvements in the accuracy of the prediction model, and in the AUC (Area under the Receiver Operating Characteristic curve). Conclusion: the post-operative prediction model for cardiovascular disease diagnosis constructed by our study has shown satisfactory prediction ability. It can be used in decision analysis system to assist surgeons in predicting Como3, T_ICU, length of hospital stay, Echo 2 Lvef and Alive_Fc
