298 research outputs found
Modeling hierarchical relationships in epidemiological studies: a Bayesian networks approach
Hierarchical relationships between risk factors are seldom taken into account in epidemiological studies though some authors stressed the importance of doing so, and proposed a conceptual framework in which each level of the hierarchy is modeled separately. The objective of this paper was to implement a simple version of their framework, and to propose an alternative procedure based on a Bayesian Network (BN). These approaches were illustrated in modeling the risk of diarrhea infection for 2740 children aged 0 to 59 months in Cameroon. The authors implemented a (naĂŻve) logistic regression, a step-level logistic regression and also a BN. While the first approach is inadequate, the two others approaches both account for the hierarchical structure but to different estimates and interpretations. BN implementation showed that a child in a family in the poorest group has respectively 89%, 40% and 18% probabilities of having poor sanitation, being malnourished and having diarrhea. An advantage of the latter approach is that it enables one to determine the probability that a risk factor (and/or the outcome) is in a given state, given the states of the others. Although the BN considered here is very simple, the method can deal with more complicated models.Bayesian networks; hierarchical model; diarrhea infection; disease determinants; logistic regression
Multidimensional Nature of Undernutrition: A Statistical Approach
The statistical assessment of undernutrition is usually restricted to a pairwise analysis of anthropometric indicators. The main objective of this study was to model the associations between underweight, stunting and wasting and to check whether multidimensionality of undernutrition can be justified from a purely statistical point of view. 3742 children aged 0 to 59 months were enrolled in a cross-sectional household survey (2004 Cameroon Demographic and Health Surveys (DHS)). The saturated loglinear model and the multiple correspondence analysis (MCA) showed no interaction and a highly significant association between underweight and stunting (P=0), underweight and wasting (P=0); but not between stunting and wasting (P=0.430). Cronbach's alpha coefficient between weight-for-age, height-for-age and weight-for-height was 0.62 (95% CI 0.59, 0.64). Thus, the study of these associations is not straightforward as it would appear in a first instance. The lack of three-factor interaction and the value of the Cronbach's alpha coefficient indicate that undernutrition is indeed (statistically) multidimensional. The three indicators are not statistically redundant; thus for the case of Cameroon the choice of a particular anthropometric indicator should depend on the goal of the policy maker, as it comes out of this study that no single indicator is to be used for all situations.Stunting; Wasting; Underweight; anthropometric measures; Z-score; Loglinear models
Estimation of a multivariate mean under model selection uncertainty
<p>Model selection uncertainty would occur if we selected a model based on one data set and subsequently applied it for statistical inferences, because the "correct" model would not be selected with certainty. <br />When the selection and inference are based on the same dataset, some additional problems arise due to the correlation of the two stages (selection and inference). In this paper model selection uncertainty is considered and model averaging is proposed. The proposal is related to the theory of James and Stein of estimating more than three parameters from independent normal observations. We suggest that a model averaging scheme taking into account the selection procedure could be more appropriate than model selection alone. Some properties of this model averaging estimator are investigated; in particular we show using Stein's results that it is a minimax estimator and can outperform Stein-type estimators.</p
Using weight-for-age for predicting wasted children
Background: The equipments for taking body weights (scales) are more frequent in Cameroon health centres than measuring boards for heights. Even when the later exist there are some difficulties inherent in their qualities; thus the height measurement is not always available or accurate. Objective: To construct statistical models for predicting wasting from weight-for-age. Methods: 3742 children a ged 0 to 59 months were enrolled in a cross-sectional household survey (2004 Cameroon Demographic and Health Surveys (DHS)) covering the entire Cameroon national territory. Results: There were highly significant association between underweight and wasting. For all discriminant statistical methods used, the test error rates (using an independent testing sample) are less than 5%; the Area Under the Curve (AUC) using the Receiver Operating Characteristic (ROC) is 0.86. Conclusions: Weight-for-age can be used for accurately classifying a child whose wasting status is unknown. The result is useful in Cameroon as too often the height measurements may not be feasible, thus the need for estimating wasted children.Anthropometric measures, nutritional status, discriminant analysis, underweight, wasting
Leakage current minimisation and power reduction techniques using sub-threshold design
Abstract: Low power IC solutions are in great demand with the rapid advancement of handheld devices, wearables, smart cards and radio frequency identification bringing a massive amount of new products to market that all have the same primary need: Powering the device as long as possible between the need to re- charge the batteries while at the same time dramatically decreasing the device leakage currents. The use of sub-threshold techniques can be a powerful way to create circuits that consume dramatically less energy than those built using standard design practices. In this research, a SOI device was built to compare their electrical characteristics using Silvaco software. The comparisons were focus! ed on three main electrical characteristics that are threshold voltage, sub-threshold voltage and leakage current. It was found that SOI devices are ideal candidates for low power operation
Estimating and Correcting the Effects of Model Selection Uncertainty
Die meisten statistischen Analysen werden
in Unkenntnis des wahren Modells durchgefĂŒhrt, d.h. dass das
Modell, das die Daten erzeugte, unbekannt ist und die Daten
zunĂ€chst dafĂŒr verwendet werden, mit Hilfe eines
Modellauswahlkriteriums ein Modell aus einer Menge plausibler
Modelle auszuwÀhlen. Gewöhnlich werden die Daten dann verwendet, um
SchlĂŒsse ĂŒber einige Variablen zu ziehen. Dabei wird die
Modellunsicherheit, also die Tatsache, dass der
Modellauswahlschritt mit den gleichen Daten durchgefĂŒhrt wurde,
ignoriert, obwohl man weiĂ, dass dies zu ungĂŒltigen
Schlussfolgerungen fĂŒhrt. Die vorliegende Arbeit untersucht einige
Aspekte des Problems sowohl aus bayesianischer als auch aus
frequentistischer Sicht und macht neue VorschlÀge, wie mit dem
Problem umgegangen werden kann. Wir untersuchen bayesianische
Modellmittelung (Bayesian model averaging =BMA) und zeigen, dass
dessen frequentistisches Abschneiden nicht immer wohldefiniert ist,
denn in einigen FĂ€llen ist es unklar, ob BMA wirklich bayesianisch
ist. Wir illustrieren diesen Punkt mit einer âvollstĂ€ndigen
bayesianische Modellmittelungâ, die anwendbar ist, wenn die
interessierende GröĂe parametrisch ist. Wir stellen ein System vor,
das die KomplexitÀt von SchÀtzern nach der Modellauswahl aufdeckt
(âpost-model-selection SchĂ€tzerâ) und untersuchen ihre
Eigenschaften im Kontext der linearen Regression fĂŒr eine Vielzahl
an Modellauswahlprozeduren. Wir zeigen, dass kein
Modellauswahlkriterium gleichmĂ€Ăig besser ist als alle anderen, im
Sinne der Risikofunktion. SchlĂŒsselzutaten des Problems werden
identifiziert und verwendet, um zu zeigen, dass selbst konsistente
Modellauswahlkriterien das Problem der Modellauswahlunsicherheit
nicht lösen. Wir argumentieren auĂerdem, dass das Bedingen der
Analyse auf die Teilmenge des Stichprobenraumes, die zu einem
bestimmten Modell fĂŒhrte, unvollstĂ€ndig ist. Wir betrachten das
Problem aus frequentistischer Sicht. Obwohl Modellmittelung und
Modellauswahl normalerweise als zwei getrennte Herangehensweisen
betrachtet werden, schlagen wir vor, das zweite als Spezialfall der
Modellmittelung zu betrachten, in welcher die (zufÀlligen) Gewichte
den Wert 1 fĂŒr das ausgewĂ€hlte Modell annehmen und 0 fĂŒr alle
anderen. Aus dieser Perspektive, und da die optimalen Gewichte in
der Praxis nicht bestimmt werden können, kann nicht erwartet
werden, dass eine der zwei Methoden die andere konsistent
ĂŒbertrifft. Es fĂŒhrt uns dazu, alternative Gewichte fĂŒr die
Mittelung vorzuschlagen, die dazu gedacht sind, die
post-model-selection SchÀtzung zu verbessern. Die Innovation
besteht darin, die Modellauswahlprozedur bei der Bestimmung der
Gewichte zu berĂŒcksichtigen. Wir vergleichen die verschiedenen
Methoden fĂŒr einige einfache FĂ€lle (lineare Regression und
HÀufigkeitsschÀtzung). Wir zeigen, dass Bootstrapverfahren keine
guten SchĂ€tzer fĂŒr die Eigenschaften der post-model-selection
SchĂ€tzer liefern. ZurĂŒckkehrend zur bayesianischen Sicht zeigen wir
auf, dass, solange die Analyse bedingt auf die Daten stattfindet,
Modellauswahlunsicherheit kein Problem ist, nur die Unsicherheit
des Modells an sich. Wenn jemand allerdings an den
frequentistischen Eigenschaften der bayesianischen
post-model-selection SchÀtzern interessiert ist, ist die Situation
analog zu der in der frequentistischen Analyse. Hier schlagen wir
wieder eine Alternative zur gewöhnlichen BMA vor, in der die
Gewichte von den Auswahlkriterien des Modells abhÀngen und somit
die Auswahlprozedur berĂŒcksichtigen. Wir zeigen auĂerdem, dass die
Eigenschaften von Modellmittelung und post-model-selection
SchÀtzern nur unter einem angenommenen wahren Modell hergeleitet
werden können. Unter einer solchen Annahme wĂŒrde man allerdings
einfach das wahre Modell nehmen, ohne Modellwahl oder
Modellmittelung anzuwenden. Dieser Zirkelschluss macht es so
schwierig, mit dem Problem umzugehen. Traditionelle explorative
frequentistische Datenanalyse und Aufstellung eines Modells kann
als eine informelle Modellwahl betrachtet werden, in welcher die
genaue Modellauswahlprozedur schwierig zu rekonstruieren ist, was
es besonders schwierig macht, gĂŒltige Schlussfolgerungen zu ziehen.
Ohne die Debatte ĂŒber Vor- und Nachteile der bayesianischen und
frequentistischen Methoden zu fĂŒhren, möchten wir betonen, dass
bayesianische Methoden vorzuziehen sind, um
Modellauswahlunsicherheit zu vermeiden, solange die
frequentistischen Eigenschaften des resultierenden SchÀtzers nicht
von Interesse sind
First principle leakage current reduction technique for CMOS devices
Abstract: This paper presents a comprehensive study of leakage reduction techniques applicable to CMOS based devices. In the process, mathematical equations that model the powerperformance trade-offs in CMOS logic circuits are presented. From those equations, suitable techniques for leakage reduction as pertaining to CMOS devices are deduced. Throughout this research it became evident that designing CMOS devices with high-Îș dielectrics is a viable method for reducing leakages in cryptographic devices. To support our claim, a 22nm NMOS device was built and simulated in Athena software from Silvaco. The electrical characteristics of the fabricated device were extracted using the Atlas component of the simulator. From this research, it became evident that high-Îș dielectric metal gate are capable of providing a reliable resistance to DPA and other form of attacks on cryptographic platforms such as smart card.The fabricated device showed a marked improvement on the I on/I off ratio, where the higher ratio means that the device is suitable for low power applications. Physical models used for simulation included Si3N4 and HfO2 as gate dielectric with TiSix as metal gate. From the simulation result, it was shown that HfO2 was the best dielectric material when TiSix is used as the metal gate
Simulation and parameter optimization of polysilicon gate biaxial strained silicon MOSFETs
Abstract: Although cryptography constitutes a considerable part of the overall security architecture for several use cases in embedded systems, cryptographic devices are still vulnerable to the diversity types of side channel attacks. Improvement in performance of Strained Silicon MOSFETs utilizing conventional device scaling has become more complex, because of the amount of physical limitations associated with the device miniaturization. Therefore, a great deal of attention has recently been paid to the mobility improvement technology through applying strain to CMOS channels. This paper reviews the characteristics of strained-Si CMOS with an emphasis on the mechanism of mobility enhancement due to strain. The device physics for improving the performance of MOSFETs is studied from the viewpoint of electronic states of carriers in inversion layers and, in particular, the sub-band structures. In addition, design and simulation of biaxial strained silicon NMOSFET (n-channel) is done using Silvacoâs Athena/Atlas simulator. From the results obtained, it became clear that biaxial strained silicon NMOS is one of the best alternatives to the current conventional MOSFET
- âŠ