7 research outputs found

    Solar X-rays from Axions: Rest-Mass Dependent Signatures

    Full text link
    The spectral shape of solar X-rays is a power law. The more active the Sun is, the less steep the distribution. This behaviour can be explained by axion regeneration to X-rays occurring ~400km deep into the photosphere. Their down-comptonization reproduces the measured spectral shape, pointing at axions with rest mass m_a~17 meV/c2, without contradicting astrophysical-laboratory limits. Directly measured soft X-ray spectra from the extremely quiet Sun during 2009 (SphinX mission), though hitherto overlooked, fitt the axion scenario.Comment: To appear in Proceedings of the 5th Patras Axion Workshop, Durham 200

    Signatures for Solar Axions/WISPs

    Full text link
    Standard solar physics cannot account for the X-ray emission and other puzzles, the most striking example being the solar corona mystery. The corona temperature rise above the non-flaring magnetized sunspots, while the photosphere just underneath becomes cooler, makes this mystery more intriguing. The paradoxical Sun is suggestive of some sort of exotic solution, axions being the (only?) choice for the missing ingredient. We present atypical axion signatures, which depict solar axions with a rest mass max ~17 meV/c2. Then, the Sun has been for decades the overlooked harbinger of new particle physics.Comment: To appear in the proceedings of the 6th Patras Workshop, Zurich 5-9 July 201
    corecore