10 research outputs found

    Molecular beam epitaxy growth of indium nitride and indium gallium nitride materials for photovoltaic applications

    Get PDF
    The objective of the proposed research is to establish the technology for material growth by molecular beam epitaxy (MBE) and fabrication of indium gallium nitride/gallium nitride (InxGa1-xN/GaN) heterojunction solar cells. InxGa1-xN solar cell have the potential to span 90% of the solar spectrum, however there has been no success with high indium (In) incorporation and only limited success with low In incorporation InxGa1-xN. Therefore, this present work focuses on 15 - 30% In incorporation leading to a bandgap value of 2.3 - 2.8 eV. This work will exploit the revision of the indium nitride (InN) bandgap value of 0.68 eV, which expands the range of the optical emission of nitride-based devices from ultraviolet to near infrared regions, by developing transparent InxGa1-xN solar cells outside the visible spectrum. Photovoltaic devices with a bandgap greater than 2.0 eV are attractive because over half the available power in the solar spectrum is above the photon energy of 2.0 eV. The ability of InxGa1-xN materials to optimally span the solar spectrum offers a tantalizing solution for high-efficiency photovoltaics. Using the metal modulated epitaxy (MME) technique in a new, ultra-clean refurbished MBE system, an innovative growth regime is established where In and Ga phase separation is diminished by increasing the growth rate for InxGa1-xN. The MME technique modulates the metal shutters with a fixed duty cycle while maintaining a constant nitrogen flux and proves effective for improving crystal quality and p-type doping. We demonstrate the ability to repeatedly grow high hole concentration Mg-doped GaN films using the MME technique. The highest hole concentration obtained is equal to 4.26 e19 cm-3, resistivity of 0.5 Ω-cm, and mobility of 0.28 cm2/V-s. We have achieved hole concentrations significantly higher than recorded in the literature, proving that our growth parameters and the MME technique is feasible, repeatable, and beneficial. The high hole concentration p-GaN is used as the emitter in our InxGa1-xN solar cell devices.Ph.D.Committee Chair: Doolittle, W. Alan; Committee Member: Ferguson, Ian; Committee Member: Graham, Samuel; Committee Member: Rohatgi, Ajeet; Committee Member: Shen, Shyh-Chian

    Metal Modulation Epitaxy Growth for Extremely High Hole Concentrations Above 10(19) cm(-3) in GaN

    Get PDF
    The free hole carriers in GaN have been limited to concentrations in the low 1018 cm−3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ~10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ~1.5 x 1019 cm−3. © 2008 American Institute of Physics

    Complement inhibition can decrease the haemostatic response in a microvascular bleeding model at multiple levels.

    Get PDF
    BACKGROUND Haemostasis is a crucial process by which the body stops bleeding. It is achieved by the formation of a platelet plug, which is strengthened by formation of a fibrin mesh mediated by the coagulation cascade. In proinflammatory and prothrombotic conditions, multiple interactions of the complement system and the coagulation cascade are known to aggravate thromboinflammatory processes and increase the risk of arterial and venous thrombosis. Whether those interactions also play a relevant role during the physiological process of haemostasis is not yet completely understood. The aim of this study was to investigate the potential role of complement components and activation during the haemostatic response to mechanical vessel injury. METHODS We used a microvascular bleeding model that simulates a blood vessel, featuring human endothelial cells, perfusion with fresh human whole blood, and an inducible mechanical injury to the vessel. We studied the effects of complement inhibitors against components of the lectin (MASP-1, MASP-2), classical (C1s), alternative (FD) and common pathways (C3, C5), as well as a novel triple fusion inhibitor of all three complement pathways (TriFu). Effects on clot formation were analysed by recording of fibrin deposition and the platelet activation marker CD62P at the injury site in real time using a confocal microscope. RESULTS With the inhibitors targeting MASP-2 or C1s, no significant reduction of fibrin formation was observed, while platelet activation was significantly reduced in the presence of the FD inhibitor. Both common pathway inhibitors targeting C3 or C5, respectively, were associated with a substantial reduction of fibrin formation, and platelet activation was also reduced in the presence of the C3 inhibitor. Triple inhibition of all three activation pathways at the C3-convertase level by TriFu reduced both fibrin formation and platelet activation. When several complement inhibitors were directly compared in two individual donors, TriFu and the inhibitors of MASP-1 and C3 had the strongest effects on clot formation. CONCLUSION The observed impact of complement inhibition on reducing fibrin clot formation and platelet activation suggests a role of the complement system in haemostasis, with modulators of complement initiation, amplification or effector functions showing distinct profiles. While the interactions between complement and coagulation might have evolved to support haemostasis and protect against bleeding in case of vessel injury, they can turn harmful in pathological conditions when aggravating thromboinflammation and promoting thrombosis

    Metal Modulation Epitaxy Growth for Extremely High Hole Concentrations Above 10(19) cm(-3) in GaN

    No full text
    The free hole carriers in GaN have been limited to concentrations in the low 1018 cm−3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ~10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ~1.5 x 1019 cm−3. © 2008 American Institute of Physics

    Metal Modulation Epitaxy Growth for Extremely High Hole Concentrations Above 10(19) Cm(-3) in GaN

    No full text
    The free hole carriers in GaN have been limited to concentrations in the low 1018 cm−3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ∼ 10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ∼ 1.5×1019 cm−3

    Extremely High Hole Concentrations in C-Plane GaN

    No full text
    Metal Modulated Epitaxy (S. D. Burnham et al., J. Appl. Phys. 104, 024902 (2008) [1]) is extended to include modulation of both the shutters of Ga and Mg, the Mg being delivered from a Veeco corrosive series valved cracker (S. D. Burnham et al., Mater. Res. Soc. Proc. 798, Y8.11 (2003) [2]). The Ga fluxes used are sufficiently large that droplets rapidly form when the Ga shutter opens and are subsequently depleted when the Ga shutter closes. The result is the ability to limit surface faceting while predominantly growing under average N-rich growth conditions and thus, possibly reduce N-vacancy defects. N-vacancy defects are known to result in compensation. This ability to grow higher quality materials under N-rich conditions results in very high hole concentrations and low resistivity p-type materials. Hole concentrations as high as 2×1019 cm–3 have been achieved on c-plane GaN resulting in resistivities as low as 0.38 ohm-cm. The dependence on Ga flux, shutter timing, the corresponding RHEED images for each condition is detailed and clearly show minimization of faceting and crystal quality variations as determined by X-ray diffraction. Quantification of the Mg incorporation and residual impurities such as hydrogen, oxygen, and carbon by SIMS, eliminates co-doping, while temperature dependent hall measurements show reduced activation energies. X-ray diffraction data compares crystalline quality with hole concentration. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Metal Modulation Epitaxy Growth for Extremely High Hole Concentrations Above 10(19) Cm(-3) in GaN

    Get PDF
    The free hole carriers in GaN have been limited to concentrations in the low 1018 cm−3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ∼ 10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ∼ 1.5×1019 cm−3

    Extremely High Hole Concentrations in C-Plane GaN

    No full text
    Metal Modulated Epitaxy (S. D. Burnham et al., J. Appl. Phys. 104, 024902 (2008) [1]) is extended to include modulation of both the shutters of Ga and Mg, the Mg being delivered from a Veeco corrosive series valved cracker (S. D. Burnham et al., Mater. Res. Soc. Proc. 798, Y8.11 (2003) [2]). The Ga fluxes used are sufficiently large that droplets rapidly form when the Ga shutter opens and are subsequently depleted when the Ga shutter closes. The result is the ability to limit surface faceting while predominantly growing under average N-rich growth conditions and thus, possibly reduce N-vacancy defects. N-vacancy defects are known to result in compensation. This ability to grow higher quality materials under N-rich conditions results in very high hole concentrations and low resistivity p-type materials. Hole concentrations as high as 2×1019 cm–3 have been achieved on c-plane GaN resulting in resistivities as low as 0.38 ohm-cm. The dependence on Ga flux, shutter timing, the corresponding RHEED images for each condition is detailed and clearly show minimization of faceting and crystal quality variations as determined by X-ray diffraction. Quantification of the Mg incorporation and residual impurities such as hydrogen, oxygen, and carbon by SIMS, eliminates co-doping, while temperature dependent hall measurements show reduced activation energies. X-ray diffraction data compares crystalline quality with hole concentration. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
    corecore