118 research outputs found

    Low-control and robust quantum refrigerator and applications with electronic spins in diamond

    Get PDF
    We propose a general protocol for low-control refrigeration and thermometry of thermal qubits, which can be implemented using electronic spins in diamond. The refrigeration is implemented by a probe, consisting of a network of interacting spins. The protocol involves two operations: (i) free evolution of the probe; and (ii) a swap gate between one spin in the probe and the thermal qubit we wish to cool. We show that if the initial state of the probe falls within a suitable range, and the free evolution of the probe is both unital and conserves the excitation in the zz-direction, then the cooling protocol will always succeed, with an efficiency that depends on the rate of spin dephasing and the swap gate fidelity. Furthermore, measuring the probe after it has cooled many qubits provides an estimate of their temperature. We provide a specific example where the probe is a Heisenberg spin chain, and suggest a physical implementation using electronic spins in diamond. Here the probe is constituted of nitrogen vacancy (NV) centers, while the thermal qubits are dark spins. By using a novel pulse sequence, a chain of NV centers can be made to evolve according to a Heisenberg Hamiltonian. This proposal allows for a range of applications, such as NV-based nuclear magnetic resonance of photosensitive molecules kept in a dark spot on a sample, and it opens up possibilities for the study of quantum thermodynamics, environment-assisted sensing, and many-body physics

    Scalable Focused Ion Beam Creation of Nearly Lifetime-Limited Single Quantum Emitters in Diamond Nanostructures

    Get PDF
    The controlled creation of defect center---nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here, we demonstrate direct, maskless creation of atom-like single silicon-vacancy (SiV) centers in diamond nanostructures via focused ion beam implantation with 32\sim 32 nm lateral precision and <50< 50 nm positioning accuracy relative to a nanocavity. Moreover, we determine the Si+ ion to SiV center conversion yield to 2.5%\sim 2.5\% and observe a 10-fold conversion yield increase by additional electron irradiation. We extract inhomogeneously broadened ensemble emission linewidths of 51\sim 51 GHz, and close to lifetime-limited single-emitter transition linewidths down to 126±13126 \pm13 MHz corresponding to 1.4\sim 1.4-times the natural linewidth. This demonstration of deterministic creation of optically coherent solid-state single quantum systems is an important step towards development of scalable quantum optical devices

    Correction to: First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma

    Get PDF
    © 2018 The Author(s). Following publication of the original article [1], the authors reported an error in the spelling of one of the author names. In this Correction the incorrect and correct author names are indicated and the author name has been updated in the original publication. The authors also reported an error in the Methods section of the original article. In this Correction the incorrect and correct versions of the affected sentence are indicated. The original article has not been updated with regards to the error in the Methods section

    The next frontier: Fostering innovation by improving health data access and utilization

    Get PDF
    Beneath most lively policy debates sit dry-as-dust theoretical and methodological discussions. Current disputes over the EU Adaptive Pathways initiative and the proposed US 21st Century Cures Act may ultimately rest on addressing arcane issues of data curation, standardization, and utilization. Improved extraction of inform ation on the safety and effectiveness of drugs-in-use must parallel adjustments in evidence requirements at the time of licensing. To do otherwise may compromise safety and efficacy in the name of fostering innovation

    A diamond nanophotonic interface with an optically accessible deterministic electronuclear spin register

    Full text link
    A contemporary challenge for the scalability of quantum networks is developing quantum nodes with simultaneous high photonic efficiency and long-lived qubits. Here, we present a fibre-packaged nanophotonic diamond waveguide hosting a tin-vacancy centre with a spin-1/2 117^{117}Sn nucleus. The interaction between the electronic and nuclear spins results in a signature 452(7) MHz hyperfine splitting. This exceeds the natural optical linewidth by a factor of 16, enabling direct optical nuclear-spin initialisation with 98.6(3)% fidelity and single-shot readout with 80(1)% fidelity. The waveguide-to-fibre extraction efficiency of our device of 57(6)% enables the practical detection of 5-photon events. Combining the photonic performance with the optically initialised nuclear spin, we demonstrate a spin-gated single-photon nonlinearity with 11(1)% contrast in the absence of an external magnetic field. These capabilities position our nanophotonic interface as a versatile quantum node in the pursuit of scalable quantum networks

    Application of pharmacogenomics and bioinformatics to exemplify the utility of human <i>ex vivo</i> organoculture models in the field of precision medicine

    Get PDF
    Here we describe a collaboration between industry, the National Health Service (NHS) and academia that sought to demonstrate how early understanding of both pharmacology and genomics can improve strategies for the development of precision medicines. Diseased tissue ethically acquired from patients suffering from chronic obstructive pulmonary disease (COPD), was used to investigate inter-patient variability in drug efficacy using ex vivo organocultures of fresh lung tissue as the test system. The reduction in inflammatory cytokines in the presence of various test drugs was used as the measure of drug efficacy and the individual patient responses were then matched against genotype and microRNA profiles in an attempt to identify unique predictors of drug responsiveness. Our findings suggest that genetic variation in CYP2E1 and SMAD3 genes may partly explain the observed variation in drug response

    Hyperfine Spectroscopy of Isotopically Engineered Group-IV Color Centers in Diamond

    Full text link
    A quantum register coupled to a spin-photon interface is a key component in quantum communication and information processing. Group-IV color centers in diamond (SiV, GeV, and SnV) are promising candidates for this application, comprising an electronic spin with optical transitions coupled to a nuclear spin as the quantum register. However, the creation of a quantum register for these color centers with deterministic and strong coupling to the spin-photon interface remains challenging. Here, we make first-principles predictions of the hyperfine parameters of the group-IV color centers, which we verify experimentally with a comprehensive comparison between the spectra of spin active and spin neutral intrinsic dopant nuclei in single GeV and SnV emitters. In line with the theoretical predictions, detailed spectroscopy on large sample sizes reveals that hyperfine coupling causes a splitting of the optical transition of SnV an order of magnitude larger than the optical linewidth and provides a magnetic-field insensitive transition. This strong coupling provides access to a new regime for quantum registers in diamond color centers, opening avenues for novel spin-photon entanglement and quantum sensing schemes for these well-studied emitters

    Novel Automated Blood Separations Validate Whole Cell Biomarkers

    Get PDF
    Progress in clinical trials in infectious disease, autoimmunity, and cancer is stymied by a dearth of successful whole cell biomarkers for peripheral blood lymphocytes (PBLs). Successful biomarkers could help to track drug effects at early time points in clinical trials to prevent costly trial failures late in development. One major obstacle is the inaccuracy of Ficoll density centrifugation, the decades-old method of separating PBLs from the abundant red blood cells (RBCs) of fresh blood samples.To replace the Ficoll method, we developed and studied a novel blood-based magnetic separation method. The magnetic method strikingly surpassed Ficoll in viability, purity and yield of PBLs. To reduce labor, we developed an automated platform and compared two magnet configurations for cell separations. These more accurate and labor-saving magnet configurations allowed the lymphocytes to be tested in bioassays for rare antigen-specific T cells. The automated method succeeded at identifying 79% of patients with the rare PBLs of interest as compared with Ficoll's uniform failure. We validated improved upfront blood processing and show accurate detection of rare antigen-specific lymphocytes.Improving, automating and standardizing lymphocyte detections from whole blood may facilitate development of new cell-based biomarkers for human diseases. Improved upfront blood processes may lead to broad improvements in monitoring early trial outcome measurements in human clinical trials

    First Results on Survival from a Large Phase 3 Clinical Trial of an Autologous Dendritic Cell Vaccine in Newly Diagnosed Glioblastoma

    Get PDF
    Background: Standard therapy for glioblastoma includes surgery, radiotherapy, and temozolomide. This Phase 3 trial evaluates the addition of an autologous tumor lysate-pulsed dendritic cell vaccine (DCVax®-L) to standard therapy for newly diagnosed glioblastoma. Methods: After surgery and chemoradiotherapy, patients were randomized (2:1) to receive temozolomide plus DCVax-L (n = 232) or temozolomide and placebo (n = 99). Following recurrence, all patients were allowed to receive DCVax-L, without unblinding. The primary endpoint was progression free survival (PFS); the secondary endpoint was overall survival (OS). Results: For the intent-to-treat (ITT) population (n = 331), median OS (mOS) was 23.1 months from surgery. Because of the cross-over trial design, nearly 90% of the ITT population received DCVax-L. For patients with methylated MGMT (n = 131), mOS was 34.7 months from surgery, with a 3-year survival of 46.4%. As of this analysis, 223 patients are ≥ 30 months past their surgery date; 67 of these (30.0%) have lived ≥ 30 months and have a Kaplan-Meier (KM)-derived mOS of 46.5 months. 182 patients are ≥ 36 months past surgery; 44 of these (24.2%) have lived ≥ 36 months and have a KM-derived mOS of 88.2 months. A population of extended survivors (n = 100) with mOS of 40.5 months, not explained by known prognostic factors, will be analyzed further. Only 2.1% of ITT patients (n = 7) had a grade 3 or 4 adverse event that was deemed at least possibly related to the vaccine. Overall adverse events with DCVax were comparable to standard therapy alone. Conclusions: Addition of DCVax-L to standard therapy is feasible and safe in glioblastoma patients, and may extend survival
    corecore