40 research outputs found
Rasch analysis of the Patient and Observer Scar Assessment Scale (POSAS) in burn scars
The Patient and Observer Scar Assessment Scale (POSAS) is a questionnaire that was developed to assess scar quality. It consists of two separate six-item scales (Observer Scale and Patient Scale), both of which are scored on a 10-point rating scale. After many years of experience with this scale in burn scar assessment, it is appropriate to examine its psychometric properties using Rasch analysis. Cross-sectional data collection from seven clinical trials resulted in a data set of 1,629 observer scores and 1,427 patient scores of burn scars. We examined the person-item map, item fit statistics, reliability, response category ordering, and dimensionality of the POSAS. The POSAS showed an adequate fit to the Rasch model, except for the item surface area. Person reliability of the Observer Scale and Patient Scale was 0.82 and 0.77, respectively. Dimensionality analysis revealed that the unexplained variance by the first contrast of both scales was 1.7 units. Spearman correlation between the Observer Scale Rasch measure and the overall opinion of the clinician was 0.75. The Rasch model demonstrated that the POSAS is a reliable and valid scale that measures the single-construct scar qualit
Intermittent wave energy generation system with hydraulic energy storage and pressure control for stable power output
In this paper, we introduced an intermittent wave energy generator (IWEG) system with hydraulic power take-off (PTO) including accumulator storage parts. To convert unsteady wave energy into intermittent but stable electrical output power, theoretical models, including wave energy capture, hydraulic energy storage, and torque balance between hydraulic motor and electrical generator, have been developed. Then, the integrated IWEG simulator was constructed and tested at the Ningbo Institute of Technology. Through a series of experimental tests, the relationship between operating flow rates and pressure drops across the hydraulic motor was established. Furthermore, on the basis of the pressure drop signal, we proposed a feedback control method on the basis of the pressure drop database as the feedback control signal to eliminate the disturbance of periodic peak pressure impulse through the regulation of the opening ratio of a proportional flow valve and achieved the effective and stable electric power output, albeit intermittently. Compared with the previous complex control theories and algorithms, this method can keep the power output more stable over a wide range of operating conditions. Furthermore, experimental tests indicate that the IWEG system, with hydraulic PTO, including hydraulic accumulator and proportional flow control valve, is simple, reliable, and easy to control. Most importantly, the real-time power output is stable, and power quality and generation efficiency are significantly improved
Viral Etiology of Encephalitis in Children in Southern Vietnam: Results of a One-Year Prospective Descriptive Study
Viral encephalitis is associated with high morbidity and mortality in Vietnam. However little is known about the causes of the disease due to a lack of diagnostic facilities in this relatively resource-poor setting. Knowledge about the etiologies and clinical outcome of viral encephalitis is necessary for future design of intervention studies targeted at improvement of clinical management, treatment and prevention of the disease. We report the viral agents, clinical outcome and prognostic factors of mortality of encephalitis in children admitted to a referral hospital for children in southern Vietnam. We show that about one third of the enrolled patients die acutely, and that mortality is independently associated with patient age and Glasgow Coma Scale on admission. Japanese encephalitis, dengue virus and enterovirus (including enterovirus 71) are the major viruses detected in our patients. However, more than half of the patients remain undiagnosed, while mortality in this group is as high as in the diagnosed group. This study will benefit clinicians and public health in terms of clinical management and prevention of childhood encephalitis in Vietnam
Removing ammonium from contaminated water using Purolite C100E: batch, column, and household filter studies.
Ammonium removal from drinking water to protect human and environmental health is one of the major global concerns. This study evaluates the performance of Purolite C100E, a commercial cation exchange resin, in eliminating ammonium in synthetic and real contaminated groundwater. The results demonstrate that the pH operation range of the resin for better ammonium removal is 3 to 8. Lower ammonium removal at low and high pH occurred due to competition from H+ and loss of ammonium as ammonia gas, respectively. Equilibrium data of ammonium removal fitted both the Langmuir and Freundlich isotherm models with the maximum Langmuir ion exchange capacities for initial ammonium concentrations of 10-200 mg/L and 50-2000 mg/L, reaching 18.37 mg/g and 40.16 mg/g, respectively. The presence of co-ions in the water reduced the ammonium removal efficiencies slightly ( Ca2+ > K+. The higher affinity of ammonium to adsorbent is due to its lower hydrated ionic radius and H-bonding. The maximum exchange capacity in the fluidized bed studies of the original Purolite C100E (bed height 27 cm, resin weight 75 g, initial ammonium concentration 17.4 mg/L, filtration velocity 0.5 m/h) was 10.48 mg/g. It progressively reduced slightly after three regeneration cycles to 8.79 mg/g. The column breakthrough data satisfactorily fitted the Thomas model. A household filter cartridge packed with 4 kg Purolite C100E (80 cm height) and operated at a filtration velocity of 1.9 m/h in Vietnam successfully reduced the initial 6 mg NH4+/L in groundwater (after sand filter pre-treatment) to well below the Vietnam drinking water standard (3 mg/L-QCVN 01:2009/BYT) continuously for 1 week, suggesting that such a filter can be adopted in rural areas to successfully remove ammonium from groundwater