7 research outputs found
Valence band structure and band offset of 3C- and 4H-SiC studied by ballistic hole emission microscopy
p-type Schottky barriers in Pt/3C-SiC contacts have been measured using ballistic hole emission microscopy (BHEM) and estimated to be ???0.06 eV higher than identically prepared Pt/p-type 4H-SiC contacts. This indicates the 3C-SiC valence band maximum (VBM) is ???0.06 eV below the 4H-SiC VBM, consistent with the calculated ???0.05 eV type-II valence band offset between these polytypes. We also observe no evidence of an additional VBM in 3C-SiC, which supports the proposal that the second VBM observed in BHEM spectra on 4H-SiC is a crystal-field split VBM located ???110 meV below the highest VBM.open6
Growth and Characterization of 3C-SiC and 2H-AIN/GaN Films and Devices Produced on Step-Free 4H-SiC Mesa Substrates
While previously published experimental results have shown that the step-free (0 0 0 1) 4H-SiC mesa growth surface uniquely enables radical improvement of 3C-SiC and 2H-AlN/GaN heteroepitaxial film quality (greater than 100-fold reduction in extended defect densities), important aspects of the step-free mesa heterofilm growth processes and resulting electronic device benefits remain to be more fully elucidated. This paper reviews and updates recent ongoing studies of 3C-SiC and 2H-AlN/GaN heteroepilayers grown on top of 4H-SiC mesas. For both 3C-SiC and AlN/GaN films nucleated on 4H-SiC mesas rendered completely free of atomic-scale surface steps, TEM studies reveal that relaxation of heterofilm strain arising from in-plane film/substrate lattice constant mismatch occurs in a remarkably benign manner that avoids formation of threading dislocations in the heteroepilayer. In particular, relaxation appears to occur via nucleation and inward lateral glide of near-interfacial dislocation half-loops from the mesa sidewalls. Preliminary studies of homojunction diodes implemented in 3C-SiC and AlN/GaN heterolayers demonstrate improved electrical performance compared with much more defective heterofilms grown on neighbouring stepped 4H-SiC mesas. Recombination-enhanced dislocation motion known to degrade forward-biased 4H-SiC bipolar diodes has been completely absent from our initial studies of 3C-SiC diodes, including diodes implemented on defective 3C-SiC heterolayers grown on stepped 4H-SiC mesas
Lateral Growth Expansion of 4H/6H-SiC m-plane Pseudo Fiber Crystals by Hot Wall CVD Epitaxy
Lateral expansion of small mixed polytype 4H/6H-SiC slivers were realized by hot wall chemical vapor deposition (HWCVD). Small slivers cut from m-oriented ..11..00.. SiC boule slices containing regions of 4H and 6H SiC were exposed to HWCVD conditions using standard silane/propane chemistry for a period of up to eight hours. The slivers exhibited approximately 1500 microns (1.5 mm) of total lateral expansion. Initial analysis by synchrotron white beam x-ray topography (SWBXT) confirms, that the lateral growth was homoepitaxial, matching the polytype of the respective underlying region of the seed sliver
Silicon Carbide Gas Sensors for Propulsion Emissions and Safety Applications
Silicon carbide (SiC) based gas sensors have the ability to meet the needs of a range of aerospace propulsion applications including emissions monitoring, leak detection, and hydrazine monitoring. These applications often require sensitive gas detection in a range of environments. An effective sensing approach to meet the needs of these applications is a Schottky diode based on a SiC semiconductor. The primary advantage of using SiC as a semiconductor is its inherent stability and capability to operate at a wide range of temperatures. The complete SiC Schottky diode gas sensing structure includes both the SiC semiconductor and gas sensitive thin film metal layers; reliable operation of the SiC-based gas sensing structure requires good control of the interface between these gas sensitive layers and the SiC. This paper reports on the development of SiC gas sensors. The focus is on two efforts to better control the SiC gas sensitive Schottky diode interface. First, the use of palladium oxide (PdOx) as a barrier layer between the metal and SiC is discussed. Second, the use of atomically flat SiC to provide an improved SiC semiconductor surface for gas sensor element deposition is explored. The use of SiC gas sensors in a multi-parameter detection system is briefly discussed. It is concluded that SiC gas sensors have potential in a range of propulsion system applications, but tailoring of the sensor for each application is necessary
Recent Results from Epitaxial Growth on Step Free 4H-SiC Mesas
This paper updates recent progress made in growth, characterization, and understanding of high quality homoepitaxial and heteroepitaxial films grown on step-free 4H-SiC mesas. First, we report initial achievement of step-free 4H-SiC surfaces with carbon-face surface polarity. Next, we will describe further observations of how step-free 4H-SiC thin lateral cantilever evolution is significantly impacted by crystal faceting behavior that imposes non-uniform film thickness on cantilever undersides. Finally, recent investigations of in-plane lattice constant mismatch strain relief mechanisms observed for heteroepitaxial growth of 3C-SiC as well as 2H-AlN/GaN heterofilms on step-free 4H-SiC mesas will be reviewed. In both cases, the complete elimination of atomic heterointerface steps on the mesa structure enables uniquely well-ordered misfit dislocation arrays to form near the heterointerfaces with remarkable lack of dislocations threading vertically into the heteroepilayers. In the case of 3C-SiC heterofilms, it has been proposed that dislocation half-loops nucleate at mesa edges and glide laterally along the step-free 3C/4H interfaces. In contrast, 3C-SiC and 2H-AlN/GaN heterofilms grown on 4H-SiC mesas with steps exhibit highly disordered interface misfit dislocation structure coupled with 100X greater density of dislocations threading through the thickness of the heteroepilayers. These results indicate that the presence of steps at the heteroepitaxial interface (i.e., on the initial heteroepitaxial nucleation surface) plays a highly important role in the defect structure, quality, and relaxation mechanisms of single-crystal heteroepitaxial films
SiC growth by Solvent-Laser Heated Floating Zone
In an effort to grow single crystal SiC fibers for seed crystals the following two growth methods have been coupled in this work: traveling solvent and laser heated floating zone to create the solvent-laser heated floating zone (Solvent-LHFZ) crystal growth method. This paper discusses the results of these initial experiments, which includes: source material, laser heating, and analysis of the first ever Solvent-LHFZ SiC crystals (synchrotron white beam x-ray topography confirmed)