245 research outputs found

    Evolution of Broad-line Emission from Active Galactic Nuclei

    Get PDF
    Apart from viewing-dependent obscuration, intrinsic broad-line emission from active galactic nuclei (AGNs) follows an evolutionary sequence: Type 1→1.2/1.5→1.8/1.9→21 \to 1.2/1.5 \to 1.8/1.9 \to 2 as the accretion rate onto the central black hole is decreasing. This spectral evolution is controlled, at least in part, by the parameter Lbol/M2/3L_{\rm bol}/M^{2/3}, where LbolL_{\rm bol} is the AGN bolometric luminosity and MM is the black hole mass. Both this dependence and the double-peaked profiles that emerge along the sequence arise naturally in the disk-wind scenario for the AGN broad-line region.Comment: MNRAS, to be publishe

    A CANDELS WFC3 Grism Study of Emission-Line Galaxies at z ~ 2: A Mix of Nuclear Activity and Low-Metallicity Star Formation

    Get PDF
    We present Hubble Space Telescope Wide Field Camera 3 (WFC3) slitless grism spectroscopy of 28 emission-line galaxies at z ~ 2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. The high sensitivity of these grism observations, with >1σ detections of emission lines to f > 2.5 × 10^(–18) erg s^(–1) cm^(–2), means that the galaxies in the sample are typically ~7 times less massive (median M_* = 10^(9.5) M_☉) than previously studied z ~ 2 emission-line galaxies. Despite their lower mass, the galaxies have [O III]/Hβ ratios which are very similar to previously studied z ~ 2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the [O III] emission line is more spatially concentrated than the Hβ emission line with 98.1% confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L_([O III])/L_(0.5-10keV) ratio is intermediate between typical z ~ 0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked [O III] spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei

    No More Active Galactic Nuclei in Clumpy Disks Than in Smooth Galaxies at z~2 in CANDELS/3D-HST

    Get PDF
    We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3 < z < 2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that despite being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z ~ 2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z ~ 2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile, the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z ~ 1.85—whether violent disk instabilities or secular processes—are as efficient in smooth galaxies as they are in clumpy galaxies
    • …
    corecore