88 research outputs found

    Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye

    Get PDF
    Background: Saccharomyces cerevisiae multicellular communities are sustained by a scaffolding extracellular matrix, which provides spatial organization, and nutrient and water availability, and ensures group survival. According to this tissue-like biology, the yeast extracellular matrix (yECM) is analogous to the higher Eukaryotes counterpart for its polysaccharide and proteinaceous nature. Few works focused on yeast biofilms, identifying the flocculin Flo11 and several members of the HSP70 in the extracellular space. Molecular composition of the yECM, is therefore mostly unknown. The homologue of yeast Gup1 protein in high Eukaryotes (HHATL) acts as a regulator of Hedgehog signal secretion, therefore interfering in morphogenesis and cell-cell communication through the ECM, which mediates but is also regulated by this signalling pathway. In yeast, the deletion of GUP1 was associated with a vast number of diverse phenotypes including the cellular differentiation that accompanies biofilm formation. Methods: S. cerevisiae W303-1A wt strain and gup1Δ mutant were used as previously described to generate biofilmlike mats in YPDa from which the yECM proteome was extracted. The proteome from extracellular medium from batch liquid growing cultures was used as control for yECM-only secreted proteins. Proteins were separated by SDS-PAGE and 2DE. Identification was performed by HPLC, LC-MS/MS and MALDI-TOF/TOF. The protein expression comparison between the two strains was done by DIGE, and analysed by DeCyder Extended Data Analysis that included Principal Component Analysis and Hierarchical Cluster Analysis. Results: The proteome of S. cerevisiae yECM from biofilm-like mats was purified and analysed by Nano LC-MS/MS, 2D Difference Gel Electrophoresis (DIGE), and MALDI-TOF/TOF. Two strains were compared, wild type and the mutant defective in GUP1. As controls for the identification of the yECM-only proteins, the proteome from liquid batch cultures was also identified. Proteins were grouped into distinct functional classes, mostly Metabolism, Protein Fate/Remodelling and Cell Rescue and Defence mechanisms, standing out the presence of heat shock chaperones, metalloproteinases, broad signalling cross-talkers and other putative signalling proteins. The data has been deposited to the ProteomeXchange with identifier PXD001133.Conclusions: yECM, as the mammalian counterpart, emerges as highly proteinaceous. As in higher Eukaryotes ECM, numerous proteins that could allow dynamic remodelling, and signalling events to occur in/and via yECM were identified. Importantly, large sets of enzymes encompassing full antagonistic metabolic pathways, suggest that mats develop into two metabolically distinct populations, suggesting that either extensive moonlighting or actual metabolism occurs extracellularly. The gup1Δ showed abnormally loose ECM texture. Accordingly, the correspondent differences in proteome unveiled acetic and citric acid producing enzymes as putative players in structural integrity maintenance.This work was funded by the Marie Curie Initial Training Network GLYCOPHARM (PITN-GA-2012-317297), and by national funds from FCT I.P. through the strategic funding UID/BIA/04050/2013. Fábio Faria-Oliveira was supported by a PhD scholarship (SFRH/BD/45368/2008) from FCT (Fundação para a Ciência e a Tecnologia). We thank David Caceres and Montserrat MartinezGomariz from the Unidad de Proteómica, Universidad Complutense de Madrid – Parque Científico de Madrid, Spain for excellent technical assistance in the successful implementation of all proteomics procedures including peptide identification, and Joana Tulha from the CBMA, Universidade do Minho, Portugal, for helping with the SDS-PAGE experiments, and the tedious and laborious ECM extraction procedures. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium, via the PRIDE partner repository, with the dataset identifier PXD001133. We would like to thank the PRIDE team for all the help and support during the submission process.info:eu-repo/semantics/publishedVersio

    Isolation of Saccharomyces cerevisiae mutants constitutive for invertase synthesis.

    No full text
    A new method for detecting invertase activity in Saccharomyces cerevisiae colonies was used to screen for mutants resistant to catabolite repression of invertase. Mutations causing the highest level of derepression were located in two previously identified genes, cyc8 and tup1. Several of the cyc8 mutations, notably cyc8-10 and cyc8-11, were temperature dependent, repressed at 23 degrees C, and derepressed at 37 degrees C. The kinetics of derepression of invertase mRNA in cyc8-10 cells shifted from 23 to 37 degrees C was determined by Northern blots. Invertase mRNA was detectable at 5 min after the shift, with kinetics of accumulation very similar to that of wild-type cells shifted from high-glucose to low-glucose medium. Assays of representative enzymes showed that many but not all glucose-repressible enzymes are derepressed in both cyc8 and tup1 mutants. cyc8 and tup1 appear to be the major negative regulatory genes controlling catabolite repression in yeasts

    Characterization of TUP1, a mediator of glucose repression in Saccharomyces cerevisiae.

    No full text

    Histone-Dependent Association of Tup1-Ssn6 with Repressed Genes In Vivo

    No full text
    The Tup1-Ssn6 complex regulates diverse classes of genes in Saccharomyces cerevisiae and serves as a model for corepressor functions in many organisms. Tup1-Ssn6 does not directly bind DNA but is brought to target genes through interactions with sequence-specific DNA binding factors. Full repression by Tup1-Ssn6 appears to require interactions with both the histone tails and components of the general transcription machinery, although the relative contribution of these two pathways is not clear. Here, we map Tup1 locations on two classes of Tup1-Ssn6-regulated genes in vivo via chromatin immunoprecipitations. Distinct profiles of Tup1 are observed on a cell-specific genes and DNA damage-inducible genes, suggesting that alternate repressive architectures may be created on different classes of repressed genes. In both cases, decreases in acetylation of histone H3 colocalize with Tup1. Strikingly, although loss of the Srb10 mediator protein had no effect on Tup1 localization, both histone tail mutations and histone deacetylase mutations crippled the association of Tup1 with target loci. Together with previous findings that Tup1-Ssn6 physically associates with histone deacetylase activities, these results indicate that the repressor complex alters histone modification states to facilitate interactions with histones and that these interactions are required to maintain a stable repressive state
    • …
    corecore