39 research outputs found

    Transmission of Schistosoma japonicum in Marshland and Hilly Regions of China: Parasite Population Genetic and Sibship Structure

    Get PDF
    The transmission dynamics of Schistosoma japonicum remain poorly understood, as over forty species of mammals are suspected of serving as reservoir hosts. However, knowledge of the population genetic structure and of the full-sibship structuring of parasites at two larval stages will be useful in defining and tracking the transmission pattern between intermediate and definitive hosts. S. japonicum larvae were therefore collected in three marshland and three hilly villages in Anhui Province of China across three time points: April and September-October 2006, and April 2007, and then genotyped with six microsatellite markers. Results from the population genetic and sibling relationship analyses of the parasites across two larval stages demonstrated that, within the marshland, parasites from cattle showed higher genetic diversity than from other species; whereas within the hilly region, parasites from dogs and humans displayed higher genetic diversity than those from rodents. Both the extent of gene flow and the estimated proportion of full-sib relationships of parasites between two larval stages indicated that the cercariae identified within intermediate hosts in the marshlands mostly came from cattle, whereas in the hilly areas, they were varied between villages, coming primarily from rodents, dogs or humans. Such results suggest a different transmission process within the hilly region from within the marshlands. Moreover, this is the first time that the sibling relationship analysis was applied to the transmission dynamics for S. japonicum

    Use of a conditional Ubr5 mutant allele to investigate the role an N-end rule ubiquitin-protein ligase in Hedgehog signalling and embryonic limb development

    Get PDF
    Hedgehog (Hh) signalling is a potent regulator of cell fate and function. While much is known about the events within a Hh-stimulated cell, far less is known about the regulation of Hh-ligand production. Drosophila Hyperplastic Discs (Hyd), a ubiquitin-protein ligase, represents one of the few non-transcription factors that independently regulates both hh mRNA expression and pathway activity. Using a murine embryonic stem cell system, we revealed that shRNAi of the mammalian homologue of hyd, Ubr5, effectively prevented retinoic-acid-induced Sonic hedgehog (Shh) expression. We next investigated the UBR5:Hh signalling relationship in vivo by generating and validating a mouse bearing a conditional Ubr5 loss-of-function allele. Conditionally deleting Ubr5 in the early embryonic limb-bud mesenchyme resulted in a transient decrease in Indian hedgehog ligand expression and decreased Hh pathway activity, around E13.5. Although Ubr5-deficient limbs and digits were, on average, shorter than control limbs, the effects were not statistically significant. Hence, while loss of UBR5 perturbed Hedgehog signalling in the developing limb, there were no obvious morphological defects. In summary, we report the first conditional Ubr5 mutant mouse and provide evidence for a role for UBR5 in influencing Hh signalling, but are uncertain to whether the effects on Hedgehog signaling were direct (cell autonomous) or indirect (non-cell-autonomous). Elaboration of the cellular/molecular mechanism(s) involved may help our understanding on diseases and developmental disorders associated with aberrant Hh signalling

    Large animal and primate models of spinal cord injury for the testing of novel therapies

    No full text
    Large animal and primate models of spinal cord injury (SCI) are being increasingly utilized for the testing of novel therapies. While these represent intermediary animal species between rodents and humans and offer the opportunity to pose unique research questions prior to clinical trials, the role that such large animal and primate models should play in the translational pipeline is unclear. In this initiative we engaged members of the SCI research community in a questionnaire and round-table focus group discussion around the use of such models. Forty-one SCI researchers from academia, industry, and granting agencies were asked to complete a questionnaire about their opinion regarding the use of large animal and primate models in the context of testing novel therapeutics. The questions centered around how large animal and primate models of SCI would be best utilized in the spectrum of preclinical testing, and how much testing in rodent models was warranted before employing these models. Further questions were posed at a focus group meeting attended by the respondents. The group generally felt that large animal and primate models of SCI serve a potentially useful role in the translational pipeline for novel therapies, and that the rational use of these models would depend on the type of therapy and specific research question being addressed. While testing within these models should not be mandatory, the detection of beneficial effects using these models lends additional support for translating a therapy to humans. These models provides an opportunity to evaluate and refine surgical procedures prior to use in humans, and safety and bio-distribution in a spinal cord more similar in size and anatomy to that of humans. Our results reveal that while many feel that these models are valuable in the testing of novel therapies, important questions remain unanswered about how they should be used and how data derived from them should be interpreted. •Large animal and primate models of SCI are increasingly utilized to test therapies.•Perspectives on their most rational use for translating new treatments were sought.•The majority felt that these models play an important role in preclinical testing.•Demonstrating efficacy in such models should not be viewed as a regulatory requirement for FDA approval
    corecore