17 research outputs found

    Rational Convolution Roots of Isobaric Polynomials

    Full text link
    In this paper, we exhibit two matrix representations of the rational roots of generalized Fibonacci polynomials (GFPs) under convolution product, in terms of determinants and permanents, respectively. The underlying root formulas for GFPs and for weighted isobaric polynomials (WIPs), which appeared in an earlier paper by MacHenry and Tudose, make use of two types of operators. These operators are derived from the generating functions for Stirling numbers of the first kind and second kind. Hence we call them Stirling operators. To construct matrix representations of the roots of GFPs, we use the Stirling operators of the first kind. We give explicit examples to show how the Stirling operators of the second kind appear in the low degree cases for the WIP-roots. As a consequence of the matrix construction, we have matrix representations of multiplicative arithmetic functions under the Dirichlet product into its divisible closure.Comment: 13 page

    On the Invariance of a Quotient Group of the Center of F/[R, R]

    Get PDF
    Let F be a free group of rank ⩾ 2, let F/R ≅ π, and let F0 = F/[R, R]. Auslander and Lyndon showed that the center of Fo is a subgroup of R/[R, R] = Ro, and that it is non-trivial if and only if π is finite [1, corollary 1.3 and theorem 2]. In this paper it will be shown that there is a canonically defined (and not always trivial) quotient group of the center of F which depends only on π.</jats:p

    The convolution ring of arithmetic functions and symmetric polynomials

    No full text

    Cryptography and multiplicative arithmetic functions

    Full text link
    corecore