383 research outputs found

    Beating the reaction limits of biosensor sensitivity with dynamic tracking of single binding events

    Full text link
    The clinical need for ultrasensitive molecular analysis has motivated the development of several endpoint-assay technologies capable of single-molecule readout. These endpoint assays are now primarily limited by the affinity and specificity of the molecular-recognition agents for the analyte of interest. In contrast, a kinetic assay with single-molecule readout could distinguish between low-abundance, high-affinity (specific analyte) and high-abundance, low-affinity (nonspecific background) binding by measuring the duration of individual binding events at equilibrium. Here, we describe such a kinetic assay, in which individual binding events are detected and monitored during sample incubation. This method uses plasmonic gold nanorods and interferometric reflectance imaging to detect thousands of individual binding events across a multiplex solid-phase sensor with a large area approaching that of leading bead-based endpoint-assay technologies. A dynamic tracking procedure is used to measure the duration of each event. From this, the total rates of binding and debinding as well as the distribution of binding-event durations are determined. We observe a limit of detection of 19 fM for a proof-of-concept synthetic DNA analyte in a 12-plex assay format.First author draf

    The Expectancy of Parole in Montana: A Right Entitled to Some Due Process

    Get PDF
    The Expectancy of Parole in Montana: A Right Entitled to Some Due Proces

    The Expectancy of Parole in Montana: A Right Entitled to Some Due Process

    Get PDF
    The Expectancy of Parole in Montana: A Right Entitled to Some Due Proces

    Robust visualization and discrimination of nanoparticles by interferometric imaging

    Full text link
    Single-molecule and single-nanoparticle biosensors are a growing frontier in diagnostics. Digital biosensors are those which enumerate all specifically immobilized biomolecules or biological nanoparticles, and thereby achieve limits of detection usually beyond the reach of ensemble measurements. Here we review modern optical techniques for single nanoparticle detection and describe the single-particle interferometric reflectance imaging sensor (SP-IRIS). We present challenges associated with reliably detecting faint nanoparticles with SP-IRIS, and describe image acquisition processes and software modifications to address them. Specifically, we describe a image acquisition processing method for the discrimination and accurate counting of nanoparticles that greatly reduces both the number of false positives and false negatives. These engineering improvements are critical steps in the translation of SP-IRIS towards applications in medical diagnostics.R01 AI096159 - NIAID NIH HHSFirst author draf

    Interferometric detection and enumeration of viral particles using Si-based microfluidics

    Full text link
    Single-particle interferometric reflectance imaging sensor enables optical visualization and characterization of individual nanoparticles without any labels. Using this technique, we have shown end-point and real-time detection of viral particles using laminate-based active and passive cartridge configurations. Here, we present a new concept for low-cost microfluidic integration of the sensor chips into compact cartridges through utilization of readily available silicon fabrication technologies. This new cartridge configuration will allow simultaneous detection of individual virus binding events on a 9-spot microarray, and provide the needed simplicity and robustness for routine real-time operation for discrete detection of viral particles in a multiplex format.This work was supported in part by a research contract with the ASELSAN Research Center, Ankara, Turkey, and in part by the European Union's Horizon 2020 FET Open program under Grant 766466-INDEX. (ASELSAN Research Center, Ankara, Turkey; 766466-INDEX - European Union's Horizon 2020 FET Open program)First author draf

    Dissecting the Interaction of FGF8 with Receptor FGFRL1.

    Get PDF
    In mammals, the novel protein fibroblast growth factor receptor-like 1 (FGFRL1) is involved in the development of metanephric kidneys. It appears that this receptor controls a crucial transition of the induced metanephric mesenchyme to epithelial renal vesicles, which further develop into functional nephrons. FGFRL1 knockout mice lack metanephric kidneys and do not express any fibroblast growth factor (FGF) 8 in the metanephric mesenchyme, suggesting that FGFRL1 and FGF8 play a decisive role during kidney formation. FGFRL1 consists of three extracellular immunoglobulin (Ig) domains (Ig1-Ig2-Ig3), a transmembrane domain and a short intracellular domain. We have prepared the extracellular domain (Ig123), the three individual Ig domains (Ig1, Ig2, Ig3) as well as all combinations containing two Ig domains (Ig12, Ig23, Ig13) in recombinant form in human cells. All polypeptides that contain the Ig2 domain (Ig123, Ig12, Ig23, Ig2) were found to interact with FGF8 with very high affinity, whereas all constructs that lack the Ig2 domain (Ig1, Ig3, Ig13) poorly interacted with FGF8 as shown by ELISA and surface plasmon resonance. It is therefore likely that FGFRL1 represents a physiological receptor for FGF8 in the kidney and that the ligand primarily binds to the Ig2 domain of the receptor. With Biacore experiments, we also measured the affinity of FGF8 for the different constructs. All constructs containing the Ig2 domain showed a rapid association and a slow dissociation phase, from which a KD of 2-3 × 10-9 M was calculated. Our data support the hypothesis that binding of FGF8 to FGFRL1 could play an important role in driving the formation of nephrons in the developing kidney

    Safety and Tolerability of Adoptive Cell Therapy in Cancer.

    Get PDF
    Adoptive T cell therapy (ACT) is a safe and effective personalized cancer immunotherapy that can comprise naturally occurring ex vivo expanded cells (e.g., tumor-infiltrating lymphocytes [TIL]) or T cells genetically engineered to confer antigen specificity (T-cell receptor [TCR] or chimeric antigen receptor [CAR] engineered T cells) to mediate cancer rejection. In recent years, some ACTs have produced unprecedented breakthrough responses: TIL therapy has moved from melanoma to solid tumor applications, TCR-engineered cells are developed for hematologic and solid tumors, and CAR-engineered T cells have received Food and Drug Administration (FDA) approval for the treatment of patients with certain B-cell malignancies. Although results are encouraging, to date, only a small percentage of patients with advanced malignancies can benefit from ACT. Besides ACT availability and accessibility, treatment-related toxicities represent a major hurdle in the widespread implementation of this therapeutic modality. The large variety of observed toxicities is caused by the infused cell product or as side effects of accompanying medication and chemotherapy. Toxicities can occur immediately or can be delayed. In order to render those highly promising therapeutic approaches safe enough for a wider pool of patients outside of clinical trials, an international consensus for toxicity management needs to be established

    Postmetamorphic ontogenetic allometry and the evolution of skull shape in Nest-building frogs Leptodactylus (Anura: Leptodactylidae)

    Get PDF
    Allometry constitutes an important source of morphological variation. However, its influence in head development in anurans has been poorly explored. By using geometric morphometrics followed by statistical and comparative methods we analyzed patterns of allometric change during cranial postmetamorphic ontogeny in species of Nest-building frogs Leptodactylus (Leptodactylidae). We found that the anuran skull is not a static structure, and allometry plays an important role in defining its shape in this group. Similar to other groups with biphasic life-cycle, and following a general trend in vertebrates, ontogenetic changes mostly involve rearrangement in rostral, otoccipital, and suspensorium regions. Ontogenetic transformations are paralleled by shape changes associated with evolutionary change in size, such that the skulls of species of different intrageneric groups are scaled to each other, and small and large species show patterns of paedomorphic/peramorphic features, respectively. Allometric trajectories producing those phenotypes are highly evolvable though, with shape change direction and magnitude varying widely among clades, and irrespective of changes in absolute body size. These results reinforce the importance of large-scale comparisons of growth patterns to understand the plasticity, evolution, and polarity of morphological changes in different clades.Fil: Duport Bru, Ana Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Ponssa, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Vera Candioti, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentin

    Improved count rate corrections for highest data quality with PILATUS detectors

    Get PDF
    A Monte Carlo simulation is presented, which computes the rate correction factors taking into account the detector settings and the time structure of the X-ray beam. The results show good agreement with experimentally determined correction factors
    corecore