55 research outputs found

    Surveys of rice sold in Canada for aflatoxins, ochratoxin A and fumonisins

    Get PDF
    Approximately 200 samples of rice (including white, brown, red, black, basmati and jasmine, as well as wild rice) from several different countries, including the United States, Canada, Pakistan, India and Thailand, were analysed for aflatoxins, ochratoxin A (OTA) and fumonisins by separate liquid Chromatographic methods in two different years. The mean concentrations for aflatoxin B1 (AFB1) were 0.19 and 0.17 ng g−1 with respective positive incidences of 56% and 43% (≥ the limit of detection (LOD) of 0.002 ng g−1). Twenty-three samples analysed in the second year also contained aflatoxin B2 (AFB2) at levels ≥LOD of 0.002 ng g−1 The five most contaminated samples in each year contained 1.44–7.14 ng AFB1 g−1 (year 1) and 1.45–3.48 ng AFB1 g−1 (year 2); they were mostly basmati rice from India and Pakistan and black and red rice from Thailand. The average concentrations of ochratoxin A (OTA) were 0.05 and 0.005 ng g−1 in year 1 and year 2, respectively; incidences of samples containing ≥LOD of 0.05 ng g−1 were 43% and 1%, respectively, in the 2 years. All positive OTA results were confirmed by LC-MS/MS. For fumonisins, concentrations of fumonisin B1 (FB1) averaged 4.5 ng g−1 in 15 positive samples (≥0.7 ng g−1) from year 1 (n = 99); fumonisin B2 (FB2) and fumonisin B3 (FB3) were also present (≥1 ng g−1). In the second year there was only one positive sample (14 ng g−1 FB1) out of 100 analysed. All positive FB1 results were confirmed by LC-MS/MS

    In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses

    Get PDF
    The high prevalence of the Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZON) in animal feeds in mild climatic zones of Europe and North America results in considerable economic losses, as these toxins affect health and productivity particularly of pigs from all age groups. The use of mycotoxin adsorbents as feed additives is one of the most prominent approaches to reduce the risk for mycotoxicoses in farm animals, and to minimise carry-over of mycotoxins from contaminated feeds into foods of animal origin. Successful aflatoxin adsorption by means of different substances (phyllosilicate minerals, zeolites, activated charcoal, synthetic resins or yeast cell-wall-derived products) has been demonstrated in vivo and in vitro. However, attempts to adsorb DON and ZON have been less encouraging. Here we describe the adsorption capacity of a variety of potential binders, including compounds that have not been evaluated before, such as humic acids. All compounds were tested at realistic inclusion levels for their capacity to bind ZON and DON, using an in vitro method that resembles the different pH conditions in the gastro-intestinal tract of pigs. Mycotoxin adsorption was assessed by chemical methods and distinct bioassays, using specific markers of toxicity as endpoints of toxicity in cytological assays. Whereas none of the tested substances was able to bind DON in an appreciable percentage, some of the selected smectite clays, humic substances and yeast-wall derived products efficiently adsorbed ZON (>70%). Binding efficiency was indirectly confirmed by the reduction of toxicity in the in vitro bioassays. In conclusion, the presented test protocol allows the rapid screening of potential mycotoxin binders. Like other in vitro assays, the presented protocol combining chemical and biological assays cannot completely simulate the conditions of the gastro-intestinal tract, and hence in vivo experiments remain mandatory to assess the efficacy of mycotoxin binders under practical conditions
    corecore