39 research outputs found

    Structure-based programming of lymph-node targeting in molecular vaccines

    Get PDF
    In cancer patients, visual identification of sentinel lymph nodes (LNs) is achieved by the injection of dyes that bind avidly to endogenous albumin, targeting these compounds to LNs, where they are efficiently filtered by resident phagocytes1, 2. Here we translate this ‘albumin hitchhiking’ approach to molecular vaccines, through the synthesis of amphiphiles (amph-vaccines) comprising an antigen or adjuvant cargo linked to a lipophilic albumin-binding tail by a solubility-promoting polar polymer chain. Administration of structurally optimized CpG-DNA/peptide amph-vaccines in mice resulted in marked increases in LN accumulation and decreased systemic dissemination relative to their parent compounds, leading to 30-fold increases in T-cell priming and enhanced anti-tumour efficacy while greatly reducing systemic toxicity. Amph-vaccines provide a simple, broadly applicable strategy to simultaneously increase the potency and safety of subunit vaccines.David H. Koch Institute for Integrative Cancer Research at MIT (Koch Institute Support (core) Grant P30-CA14051)National Cancer Institute (U.S.)National Institutes of Health (U.S.) (grant AI091693)National Institutes of Health (U.S.) (grant AI104715)National Institutes of Health (U.S.) (AI095109)United States. Dept. of Defense (contract W911NF-13-D-0001)United States. Dept. of Defense (contract W911NF-07-D-0004)Ragon Institute of MGH, MIT, and Harvar

    Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release

    Get PDF
    Micelles are colloidal particles with a size around 5–100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use in patients with breast cancer. Micelle-based drug delivery, however, can be improved in different ways. Targeting ligands can be attached to the micelles which specifically recognize and bind to receptors overexpressed in tumor cells, and chelation or incorporation of imaging moieties enables tracking micelles in vivo for biodistribution studies. Moreover, pH-, thermo-, ultrasound-, or light-sensitive block copolymers allow for controlled micelle dissociation and triggered drug release. The combination of these approaches will further improve specificity and efficacy of micelle-based drug delivery and brings the development of a ‘magic bullet’ a major step forward

    New synthetic amphiphilic polymers for steric protection of liposomes in vivo

    No full text
    Carboxy group-terminated synthetic polymers--branched poly(ethylene glycol), poly(acryloylmorpholine), and poly(vinylpyrrolidone)--were made amphiphilic by derivatization with phosphatidyl ethanolamine via the terminal carboxy group and then incorporated into lecithin-cholesterol liposomes prepared by the detergent dialysis method. Following the biodistribution of liposomes in mice, all three polymers were shown to be effective steric protectors for liposomes and were able to sharply increase liposome circulation times in a concentration-dependent manner. The accumulation of liposomes in the liver decreases. The effects observed are similar to those found for liposomes modified with linear poly(ethylene glycol). At low polymer concentration, amphiphilic branched poly(ethylene glycol) seems to be the most effective liposome protector, most probably, because at the same molar content of anchoring groups, each attachment point carries two polymeric chains and doubles the quantity of liposome-grafted polymer comparing to linear poly(ethylene glycol)
    corecore