6 research outputs found
Hydrothermal inputs drive dynamic shifts in microbial communities in Lake Magadi, Kenya Rift Valley
The Methane Index (MI) is an organic geochemical index that uses isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) as a proxy for methane cycling. Here, we report results from core spanning > 700 ka in Lake Magadi, Kenya, which shows abrupt shifts between high and low MI values in the core. These shifts coincide with interbedded tuffaceous silt. Where tuffaceous silts are present, MI “switches off” (MI < 0.2); in contrast, where these silts are absent in the core, the MI increases (MI > 0.5). Bulk organic matter is enriched in 13C in Magadi during “MI-off” periods, with values of ~ −18 ‰ in the upper part of the core and −22 to −25 ‰ in the lower portion. Evidence from n-alkanes and fatty acid methyl esters (FAMEs) support previous interpretations of an arid environment with a shallower lake where Thermoproteotal (formerly Crenarchaeota) archaea thrive in a hot spring rich environment over Euryarchaeota. Sediments deposited when the MI switches “on” showed δ13COM values as low as −89.4 ‰, but most were within the range of −28 to −30 ‰, which is consistent with contributions from methanogens rather than methanotrophs. Thus, the likely source of these high MI values in Lake Magadi is methanogenic archaea. Our results show that hydrothermal inputs of bicarbonate-rich waters into Lake Magadi cause a shift in the dominant archaeal communities, alternating between two stable states
Microbial biomarkers reveal a hydrothermally active landscape at Olduvai Gorge at the dawn of the Acheulean, 1.7 Ma
Landscape-scale reconstructions of ancient environments within the cradle of humanity may reveal insights into the relationship between early hominins and the changing resources around them. Many studies of Olduvai Gorge during Pliocene–Pleistocene times have revealed the presence of precession-driven wet–dry cycles atop a general aridification trend, though may underestimate the impact of local-scale conditions on early hominins, who likely experienced a varied and more dynamic landscape. Fossil lipid biomarkers from ancient plants and microbes encode information about their surroundings via their molecular structures and composition, and thus can shed light on past environments. Here, we employ fossil lipid biomarkers to study the paleolandscape at Olduvai Gorge at the emergence of the Acheulean technology, 1.7 Ma, through the Lower Augitic Sandstones layer. In the context of the expansion of savanna grasslands, our results represent a resource-rich mosaic ecosystem populated by groundwater-fed rivers, aquatic plants, angiosperm shrublands, and edible plants. Evidence of a geothermally active landscape is reported via an unusual biomarker distribution consistent with the presence of hydrothermal features seen today at Yellowstone National Park. The study of hydrothermalism in ancient settings and its impact on hominin evolution has not been addressed before, although the association of thermal springs in the proximity of archaeological sites documented here can also be found at other localities. The hydrothermal features and resources present at Olduvai Gorge may have allowed early hominins to thermally process edible plants and meat, supporting the possibility of a prefire stage of human evolution
Enabling State Adoption of Non-Targeted Analysis (NTA) to Address Pressing Public Health Needs: Maryland, Minnesota, and California Leading the Way
Poster for SETAC on Nov. 12-16, 2023 in Louisville, KYScience Inventory, CCTE products: https://cfpub.epa.gov/si/si_public_search_results.cfm?advSearch=true&showCriteria=2&keyword=CCTE&TIMSType=&TIMSSubTypeID=&epaNumber=&ombCat=Any&dateBeginPublishedPresented=07/01/2017&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&DEID=&personName=&personID=&role=Any&journalName=&journalID=&publisherName=&publisherID=&sortBy=pubDate&count=25</p