162 research outputs found

    Negative and positive selection of antigen-specific cytotoxic T lymphocytes affected by the α3 domain of MHC I molecules

    Get PDF
    THE α1 and α2 domains of major histocompatibility complex (MHC) class I molecules function in the binding and presentation of foreign peptides to the T-cell antigen receptor and control both negative and positive selection of the T-cell repertoire. Although the α3 domain of class I is not involved in peptide binding, it does interact with the T-cell accessory molecule, CDS. CDS is important in the selection of T cells as anti-CDS antibody injected into perinatal mice interfers with this process. We previously used a hybrid class I molecule with the α1/α2 domains from L^d and the α3 domain from Q7^b and showed that this molecule binds an L^d-restricted peptide but does not interact with CD8-dependent cytotoxic T lymphocytes. Expression of this molecule in transgenic mice fails to negatively select a subpopulation of anti-L^d cytotoxic T lymphocytes. In addition, positive selection of virus-specific L^d-restricted cytotoxic T lymphocytes does not occur. We conclude that besides the α1/α2 domains of class I, the α3 domain plays an important part in both positive and negative selection of antigen-specific cells

    CD44s and CD44v6 Expression in Head and Neck Epithelia

    Get PDF
    Background: CD44 splice variants are long-known as being associated with cell transformation. Recently, the standard form of CD44 (CD44s) was shown to be part of the signature of cancer stem cells (CSCs) in colon, breast, and in head and neck squamous cell carcinomas (HNSCC). This is somewhat in contradiction to previous reports on the expression of CD44s in HNSCC. The aim of the present study was to clarify the actual pattern of CD44 expression in head and neck epithelia. Methods: Expression of CD44s and CD44v6 was analysed by immunohistochemistry with specific antibodies in primary head and neck tissues. Scoring of all specimens followed a two-parameters system, which implemented percentages of positive cells and staining intensities from − to +++ (score = %×intensity; resulting max. score 300). In addition, cell surface expression of CD44s and CD44v6 was assessed in lymphocytes and HNSCC. Results: In normal epithelia CD44s and CD44v6 were expressed in 60–95% and 50–80% of cells and yielded mean scores with a standard error of a mean (SEM) of 249.5±14.5 and 198±11.13, respectively. In oral leukoplakia and in moderately differentiated carcinomas CD44s and CD44v6 levels were slightly increased (278.9±7.16 and 242±11.7; 291.8±5.88 and 287.3±6.88). Carcinomas in situ displayed unchanged levels of both proteins whereas poorly differentiated carcinomas consistently expressed diminished CD44s and CD44v6 levels. Lymphocytes and HNSCC lines strongly expressed CD44s but not CD44v6. Conclusion: CD44s and CD44v6 expression does not distinguish normal from benign or malignant epithelia of the head and neck. CD44s and CD44v6 were abundantly present in the great majority of cells in head and neck tissues, including carcinomas. Hence, the value of CD44s as a marker for the definition of a small subset of cells (i.e. less than 10%) representing head and neck cancer stem cells may need revision

    Impact of Reference Gene Selection for Target Gene Normalization on Experimental Outcome Using Real-Time qRT-PCR in Adipocytes

    Get PDF
    Background: With the current rise in obesity-related morbidities, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) has become a widely used method for assessment of genes expressed and regulated by adipocytes. In order to measure accurate changes in relative gene expression and monitor intersample variability, normalization to endogenous control genes that do not change in relative expression is commonly used with qRT-PCR determinations. However, historical evidence has clearly demonstrated that the expression profiles of traditional control genes (e.g., b-actin, GAPDH, a-tubulin) are differentially regulated across multiple tissue types and experimental conditions. Methodology/Principal Findings: Therefore, we validated six commonly used endogenous control genes under diverse experimental conditions of inflammatory stress, oxidative stress, synchronous cell cycle progression and cellular differentiation in 3T3-L1 adipocytes using TaqMan qRT-PCR. Under each study condition, we further evaluated the impact of reference gene selection on experimental outcome using examples of target genes relevant to adipocyte function and differentiation. We demonstrate that multiple reference genes are regulated in a condition-specific manner that is not suitable for use in target gene normalization. Conclusion/Significance: Data are presented demonstrating that inappropriate reference gene selection can have profound influence on study conclusions ranging from divergent statistical outcome to inaccurate data interpretation of significan

    Codes of Fair Competition: The National Recovery Act, 1933-1935, and the Women’s Dress Manufacturing Industry

    Get PDF
    Controversial issues prevalent in today’s ready-to-wear apparel industry include the right of workers to join unions, the proliferation of sweatshops and sweatshop conditions, and design piracy. The idea of forming codes of conduct to establish criteria of ethical business practices is not new to the apparel industry. Indeed, the women’s dress manufacturing industry discussed and debated codes of fair competition under the New Deal Policies of the National Recovery Act (NRA) of 1933 to 1935. Primary sources for this study included governmental hearings in the establishment of the NRA Dress Code, The New York Times, Women’s Wear Daily, and the Journal of the Patent Office Society. The history of the NRA codes implemented in the U.S. women’s ready-to-wear apparel industry provides an important case study highlighting the difficulties and complexities of creating and achieving industry-wide standard practices through self-regulation. The failure of the NRA demonstrates that even with the joint cooperation of industry, labor, and consumer groups and the backing of the force of law, codes of fair competition proved impossible to enforce

    An Essential Role for the Proximal but Not the Distal Cytoplasmic Tail of Glycoprotein M in Murid Herpesvirus 4 Infection

    Get PDF
    Murid herpesvirus-4 (MuHV-4) provides a tractable model with which to define common, conserved features of gamma-herpesvirus biology. The multi-membrane spanning glycoprotein M (gM) is one of only 4 glycoproteins that are essential for MuHV-4 lytic replication. gM binds to gN and is thought to function mainly secondary envelopment and virion egress, for which several predicted trafficking motifs in its C-terminal cytoplasmic tail could be important. We tested the contribution of the gM cytoplasmic tail to MuHV-4 lytic replication by making recombinant viruses with varying C-terminal deletions. Removing an acidic cluster and a distal YXXΦ motif altered the capsid distribution somewhat in infected cells but had little effect on virus replication, either in vitro or in vivo. In contrast, removing a proximal YXXΦ motif as well completely prevented productive replication. gM was still expressed, but unlike its longer forms showed only limited colocalization with co-transfected gN, and in the context of whole virus appeared to support gN expression less well. We conclude that some elements of the gM cytoplasmic tail are dispensible for MuHV-4 replication, but the tail as a whole is not

    The Compartmentalisation of Phosphorylated Free Oligosaccharides in Cells from a CDG Ig Patient Reveals a Novel ER-to-Cytosol Translocation Process

    Get PDF
    BACKGROUND: Biosynthesis of the dolichol linked oligosaccharide (DLO) required for protein N-glycosylation starts on the cytoplasmic face of the ER to give Man(5)GlcNAc(2)-PP-dolichol, which then flips into the ER for further glycosylation yielding mature DLO (Glc(3)Man(9)GlcNAc(2)-PP-dolichol). After transfer of Glc(3)Man(9)GlcNAc(2) onto protein, dolichol-PP is recycled to dolichol-P and reused for DLO biosynthesis. Because de novo dolichol synthesis is slow, dolichol recycling is rate limiting for protein glycosylation. Immature DLO intermediates may also be recycled by pyrophosphatase-mediated cleavage to yield dolichol-P and phosphorylated oligosaccharides (fOSGN2-P). Here, we examine fOSGN2-P generation in cells from patients with type I Congenital Disorders of Glycosylation (CDG I) in which defects in the dolichol cycle cause accumulation of immature DLO intermediates and protein hypoglycosylation. METHODS AND PRINCIPAL FINDINGS: In EBV-transformed lymphoblastoid cells from CDG I patients and normal subjects a correlation exists between the quantities of metabolically radiolabeled fOSGN2-P and truncated DLO intermediates only when these two classes of compounds possess 7 or less hexose residues. Larger fOSGN2-P were difficult to detect despite an abundance of more fully mannosylated and glucosylated DLO. When CDG Ig cells, which accumulate Man(7)GlcNAc(2)-PP-dolichol, are permeabilised so that vesicular transport and protein synthesis are abolished, the DLO pool required for Man(7)GlcNAc(2)-P generation could be depleted by adding exogenous glycosylation acceptor peptide. Under conditions where a glycotripeptide and neutral free oligosaccharides remain predominantly in the lumen of the ER, Man(7)GlcNAc(2)-P appears in the cytosol without detectable generation of ER luminal Man(7)GlcNAc(2)-P. CONCLUSIONS AND SIGNIFICANCE: The DLO pools required for N-glycosylation and fOSGN2-P generation are functionally linked and this substantiates the hypothesis that pyrophosphatase-mediated cleavage of DLO intermediates yields recyclable dolichol-P. The kinetics of cytosolic fOSGN2-P generation from a luminally-generated DLO intermediate demonstrate the presence of a previously undetected ER-to-cytosol translocation process for either fOSGN2-P or DLO

    Notch-induced T cell development requires phosphoinositide-dependent kinase 1

    Get PDF
    Phosphoinositide-dependent kinase l (PDK1) phosphorylates and activates multiple AGC serine kinases, including protein kinase B (PKB), p70Ribosomal S6 kinase (S6K) and p90Ribosomal S6 kinase (RSK). PDK1 is required for thymocyte differentiation and proliferation, and herein, we explore the molecular basis for these essential functions of PDK1 in T lymphocyte development. A key finding is that PDK1 is required for the expression of key nutrient receptors in T cell progenitors: CD71 the transferrin receptor and CD98 a subunit of L-amino acid transporters. PDK1 is also essential for Notch-mediated trophic and proliferative responses in thymocytes. A PDK1 mutant PDK1 L155E, which supports activation of PKB but no other AGC kinases, can restore CD71 and CD98 expression in pre-T cells and restore thymocyte differentiation. However, PDK1 L155E is insufficient for thymocyte proliferation. The role of PDK1 in thymus development thus extends beyond its ability to regulate PKB. In addition, PDK1 phosphorylation of AGC kinases such as S6K and RSK is also necessary for thymocyte development

    Role of CD45 Signaling Pathway in Galactoxylomannan-Induced T Cell Damage

    Get PDF
    Previously, we reported that Galactoxylomannan (GalXM) activates the extrinsic and intrinsic apoptotic pathways through an interaction with the glycoreceptors on T cells. In this study we establish the role of the glycoreceptor CD45 in GalXM-induced T cell apoptosis, using CD45+/+ and CD45−/− cell lines, derived from BW5147 murine T cell lymphoma. Our results show that whereas CD45 expression is not required for GalXM association by the cells, it is essential for apoptosis induction. In CD45+/+ cells, CD45 triggering by GalXM reduces the activation of Lck, ZAP70 and Erk1/2. Conversely, in CD45−/− cells, Lck was hyperphosphorylated and did not show any modulation after GalXM stimulation. On the whole, our findings provide evidence that the negative regulation of Lck activation occurs via CD45 engagement. This appears to be related to the capacity of GalXM to antagonize T cell activation and induce T cell death. Overall this mechanism may be responsible for the immune paralysis that follows GalXM administration and could explain the powerful immunosuppression that accompanies cryptococcosis

    Subcellular distribution of terminal α-D- and β-D-galactosyl residues in Ehrlich tumour cells studied by lectin-gold techniques

    Full text link
    We have studied by high resolution in situ light and electron microscopic lectin-gold techniques the subcellular distribution of α- d -Gal residues using the Griffonia simplicifolia I-B 4 isolectin and compared it with that of β- d -Gal residues as detected with the Datura stramonium lectin in Ehrlich tumour cells grown as ascites or monolayer. The microvillar but not the smooth plasma membrane regions were labelled with the Griffonia simplicifolia I-B 4 isolectin whereas both plasma membrane regions were equally well labelled with the Datura stramonium lectin. Elements of the endocytotic/lysosomal system such as coated membrane invaginations and vesicles, early and late endosomes and secondary lysosomes were positive for both α- d -Gal and β- d -Gal residues. A particular feature of Ehrlich tumour cells is an elaborate tubular membrane system located in the pericentriolar region which is labelled throughout by both lectins and represents part of the endosomal system. In the Golgi apparatus labelling with both lectins was observed to commence in trans cisternae which is indirect evidence for a joint distribution of the sequentially acting β1,4 and α1,3-galactosyl-transferases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45677/1/10719_2004_Article_BF00731358.pd
    corecore