1,054 research outputs found
Inspection of commercial fertilizers
Cover title
Inspection of commercial fertilizers
Cover title
Inspection of commercial fertilizers
Cover title
Rapid mixed layer depening by the combination of Langmuir and shear instabilities : a case study
Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2381-2400, doi:10.1175/2010JPO4403.1.Langmuir circulation (LC) is a turbulent upper-ocean process driven by wind and surface waves that contributes significantly to the transport of momentum, heat, and mass in the oceanic surface layer. The authors have previously performed a direct comparison of large-eddy simulations and observations of the upper-ocean response to a wind event with rapid mixed layer deepening. The evolution of simulated crosswind velocity variance and spatial scales, as well as mixed layer deepening, was only consistent with observations if LC effects are included in the model. Based on an analysis of these validated simulations, in this study the fundamental differences in mixing between purely shear-driven turbulence and turbulence with LC are identified. In the former case, turbulent kinetic energy (TKE) production due to shear instabilities is largest near the surface, gradually decreasing to zero near the base of the mixed layer. This stands in contrast to the LC case in which at middepth range TKE production can be dominated by Stokes drift shear. Furthermore, the Eulerian mean vertical shear peaks near the base of the mixed layer so that TKE production by mean shear flow is elevated there. LC transports horizontal momentum efficiently downward leading to an along-wind velocity jet below LC downwelling regions at the base of the mixed layer. Locally enhanced vertical shear instabilities as a result of this jet efficiently erode the thermocline. In turn, enhanced breaking internal waves inject cold deep water into the mixed layer, where LC currents transport temperature perturbation advectively. Thus, LC and locally generated shear instabilities work intimately together to facilitate strongly the mixed layer deepening process.This research was supported by
the Office of Naval Research through Grants N00014-09-M-0112 (TK) and N00014-06-1-0178 (AP,
JT). Author TK also received support from a Woods
Hole Oceanographic Institution Cooperative Institute for
Climate and Ocean Research Postdoctoral Scholarship
Significance of Langmuir circulation in upper ocean mixing : comparison of observations and simulations
Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 36 (2009): L10603, doi:10.1029/2009GL037620.Representing upper ocean turbulence accurately in models remains a great challenge for improving weather and climate projections. Langmuir circulation (LC) is a turbulent process driven by wind and surface waves that plays a key role in transferring momentum, heat, and mass in the oceanic surface layer. We present a direct comparison between observations and large eddy simulations, based on the wave-averaged Navier-Stokes equation, of an LC growth event. The evolution of cross-wind velocity variance and spatial scales, as well as mixed layer deepening are only consistent with simulations if LC effects are included in the model. Our results offer a validation of the large eddy simulation approach to understanding LC dynamics, and demonstrate the importance of LC in ocean surface layer mixing.This research was supported by the Office
of Naval Research through grants N00014-09-M-0112 (TK) and
N00014-06-1-0178 (AP, JT). TK also received support from a Woods
Hole Oceanographic Institution Cooperative Institute for Climate and
Ocean Research Postdoctoral Scholarship
- …