112 research outputs found
C4b-binding protein binds to necrotic cells and DNA, limiting DNA release and inhibiting complement activation
After cell death, via apoptosis or necrosis, the uptake of dead cells by neighboring cells or phagocytes prevents the release of intracellular content. An array of molecules, including initiation molecules of the complement system, are involved in marking dead cells for uptake. After binding of these molecules, complement activation takes place, which when uncontrolled might result in a proinflammatory state. In the current study we demonstrate that complement inhibitor, C4b-binding protein (C4BP), binds strongly to necrotic cells, irrespective of the cell type used or the method of induction. After binding of the C4BP–protein S (PS) complex to necrotic cells via PS-phosphatidylserine and C4BP-DNA interactions, C4BP-PS inhibits complement activation on these cells. C4BP binds DNA via a patch of positively charged amino acids, mainly on the second complement control domain of the C4BP α-chain (affinity constant: 190 nM). Furthermore, C4BP limits DNA release from necrotic cells and inhibits DNA-mediated complement activation in solution. The C4BP–necrotic cell interaction also occurs in vivo as necrotic areas of arteriosclerotic plaques and of various cancers stain strongly positive for C4BP. This study describes a novel mechanism in which C4BP limits the inflammatory potential of necrotic cells
The fine specificity of IgM anti-citrullinated protein antibodies (ACPA) is different from that of IgG ACPA
Pathophysiology and treatment of rheumatic disease
Age and Sex-Associated Changes of Complement Activity and Complement Levels in a Healthy Caucasian Population
Introduction: The complement system is essential for an adequate immune response. Much attention has been given to the role of complement in disease. However, to better understand complement in pathology, it is crucial to first analyze this system under different physiological conditions. The aim of the present study was therefore to investigate the inter-individual variation in complement activity and the influences of age and sex.Methods: Complement levels and functional activity were determined in 120 healthy volunteers, 60 women, 60 men, age range 20–69 year. Serum functional activity of the classical pathway (CP), lectin pathway activated by mannan (MBL-LP) and alternative pathway (AP) was measured in sera, using deposition of C5b-9 as readout. In addition, levels of C1q, MBL, MASP-1, MASP-2, ficolin-2, ficolin-3, C2, C4, C3, C5, C6, C7, C8, C9, factor B, factor D, properdin, C1-inhibitor and C4b-binding protein, were determined. Age- and sex-related differences were evaluated.Results: Significantly lower AP activity was found in females compared to males. Further analysis of the AP revealed lower C3 and properdin levels in females, while factor D concentrations were higher. MBL-LP activity was not influenced by sex, but MBL and ficolin-3 levels were significantly lower in females compared to males. There were no significant differences in CP activity or CP components between females and males, nevertheless females had significantly lower levels of the terminal components. The CP and AP activity was significantly higher in the elderly, in contrast to MBL-LP activity. Moreover, C1-inhibitor, C5, C8, and C9 increased with age in contrast to a decrease of factor D and C3 levels. In-depth analysis of the functional activity assays revealed that MBL-LP activity was predominantly dependent on MBL and MASP-2 concentration, whereas CP activity relied on C2, C1-inhibitor and C5 levels. AP activity was strongly and directly associated with levels of C3, factor B and C5.Conclusion: This study demonstrated significant sex and age-related differences in complement levels and functionality in the healthy population. Therefore, age and sex analysis should be taken into consideration when discussing complement-related pathologies and subsequent complement-targeted therapies
Arthritis autoantibodies in individuals without rheumatoid arthritis:follow-up data from a Dutch population-based cohort (Lifelines)
Objectives. To assess whether the presence of arthritis autoantibodies alongside IgG ACPA predicts clinically suspect arthralgia in ACPA-positive subjects without RA. Methods. In the population-based Lifelines cohort (n=40 136), 308 IgG ACPA-positive individuals without RA were present. Serum levels of IgA ACPA, IgA and IgM RF, and IgG anti-carbamylated antibodies were measured at baseline. Individuals were divided based on the Connective tissue disease Screening Questionnaire after 2 years follow-up. Antibodies to Porphyromonas gingivalis were determined at baseline and related to presence of periodontitis and joint complaints at 2 years follow-up. Results. Of 308 subjects 53.6% were also seropositive for IgA ACPA, 42.2% for IgM RF, 23.7% for IgA RF and 13.6% for anti-carbamylated antibodies. We defined 75 persons with clinically suspect arthralgia at risk for RA based on CTD Screening Questionnaire at follow-up. Significantly more seropositivity for IgM RF and higher levels of IgG ACPA, IgA ACPA and IgM RF were found in clinically suspect arthralgia compared with no-clinically suspect arthralgia. In multivariate logistic regression correcting for age, gender and never smoking, positivity for three or more extra autoantibodies was significantly associated with clinically suspect arthralgia. Although levels of anti-P. gingivalis were not different between groups, they were significantly correlated to levels of both RFs, and both ACPAs in clinically suspect arthralgia. Conclusions. ACPA-positive individuals without RA who develop clinically suspect arthralgia have more and higher levels of other arthritis autoantibodies at baseline. Levels of anti-P. gingivalis are not related to self-reported periodontitis or clinically suspect arthralgia, but are correlated to arthritis autoantibodies in clinically suspect arthralgia
Anticarbamylated protein antibodies are associated with long-term disability and increased disease activity in patients with early inflammatory arthritis:Results from the Norfolk Arthritis Register
Objectives: Anticarbamylated protein (anti-CarP) antibodies are a novel family of autoantibodies recently identified in patients with inflammatory arthritis. The aim of this study was to investigate their association with long-term outcomes of disability and disease activity over 20 years’ follow-up in a cohort of patients with inflammatory polyarthritis (IP). Methods: Norfolk Arthritis Register recruited adults with recent-onset swelling of ≥2 joints for ≥4 weeks from 1990 to 2009. At baseline, Health Assessment Questionnaire (HAQ) and 28 joint disease activity scores (DAS28) were obtained, and C reactive protein, rheumatoid factor (RF), anticitrullinated protein antibodies (ACPA) and anti-CarP antibodies were measured. Further HAQ scores and DAS28 were obtained at regular intervals over 20 years. Generalised estimating equations were used to test the association between anti-CarP antibody status and longitudinal HAQ and DAS28 scores; adjusting for age, gender, smoking status, year of inclusion and ACPA status. Analyses were repeated in subgroups stratified by ACPA status. The relative association of RF, ACPA and anti-CarP antibodies with HAQ and DAS28 scores was investigated using a random effects model. Results: 1995 patients were included; 1310 (66%) were female. Anti-CarP antibodies were significantly associated with more disability and higher disease activity, HAQ multivariate β-coefficient (95% CI) 0.12 (0.02 to 0.21), and these associations remained significant in the ACPA-negative subgroups. The associations of RF, ACPA and anti-CarP antibodies were found to be additive in the random effects model. Conclusions: Anti-CarP antibodies are associated with increased disability and higher disease activity in patients with IP. Our results suggest that measurement of anti-CarP antibodies may be useful in identifying ACPA-negative patients with worse long-term outcomes. Further, anti-CarP antibody status provided additional information about RF and ACPA
C4b-Binding Protein Is Present in Affected Areas of Myocardial Infarction during the Acute Inflammatory Phase and Covers a Larger Area than C3
BACKGROUND: During myocardial infarction reduced blood flow in the heart muscle results in cell death. These dying/dead cells have been reported to bind several plasma proteins such as IgM and C-reactive protein (CRP). In the present study we investigated whether fluid-phase complement inhibitor C4b-binding protein (C4BP) would also bind to the infarcted heart tissue. METHODS AND FINDINGS: Initial studies using immunohistochemistry on tissue arrays for several cardiovascular disorders indicated that C4BP can be found in heart tissue in several cardiac diseases but that it is most abundantly found in acute myocardial infarction (AMI). This condition was studied in more detail by analyzing the time window and extent of C4BP positivity. The binding of C4BP correlates to the same locations as C3b, a marker known to correlate to the patterns of IgM and CRP staining. Based on criteria that describe the time after infarction we were able to pinpoint that C4BP binding is a relatively early marker of tissue damage in myocardial infarction with a peak of binding between 12 hours and 5 days subsequent to AMI, the phase in which infiltration of neutrophilic granulocytes in the heart is the most extensive. CONCLUSIONS: C4BP, an important fluid-phase inhibitor of the classical and lectin pathway of complement activation binds to jeopardized cardiomyocytes early after AMI and co-localizes to other well known markers such as C3b
Circulating Levels of Anti-C1q and Anti-Factor H Autoantibodies and Their Targets in Normal Pregnancy and Preeclampsia
Preeclampsia (PE) generally manifests in the second half of pregnancy with hypertension and proteinuria. The understanding of the origin and mechanism behind PE is incomplete, although there is clearly an immune component to this disorder. The placenta constitutes a complicated immune interface between fetal and maternal cells, where regulation and tolerance are key. Stress factors from placental dysfunction in PE are released to the maternal circulation evoking the maternal response. Several complement factors play a role within this intricate landscape, including C1q in vascular remodeling and Factor H (FH) as the key regulator of alternative pathway complement activation. We hypothesize that decreased levels of C1q or FH, or disturbance of their function by autoantibodies, may be associated with PE. Autoantibodies against C1q and FH and the concentrations of C1q and FH were measured by ELISA in maternal sera from women with preeclamptic and normal pregnancies. Samples originated from cohorts collected in the Netherlands (n=63 PE; n=174 control pregnancies, n=51 nonpregnant), Finland (n=181 PE; n=63 control pregnancies) and Norway (n=59 PE; n=27 control pregnancies). Serum C1q and FH concentrations were higher in control pregnancy than in nonpregnant women. No significant differences were observed for serum C1q between preeclamptic and control pregnancy in any of the three cohorts. Serum levels of FH were lower in preeclamptic pregnancies compared to control pregnancies in two of the cohorts, this effect was driven by the early onset PE cases. Neither anti-C1q autoantibodies nor anti-FH autoantibodies levels differed between women with PE and normal pregnancies. In conclusion, levels of anti-C1q and anti-FH autoantibodies are not increased in PE. C1q and FH are increased in pregnancy, but importantly, a decrease in FH concentration is associated with PE.Peer reviewe
Initial properdin binding contributes to alternative pathway activation at the surface of viable and necrotic cells
Properdin, the only known positive regulator of the complement system, stabilizes the C3 convertase, thereby increasing its half-life. In contrast to most other complement factors, properdin is mainly produced extrahepatically by myeloid cells. Recent data suggest a role for properdin as a pattern recognition molecule. Here, we confirmed previous findings of properdin binding to different necrotic cells including Jurkat T cells. Binding can occur independent of C3, as demonstrated by HAP-1 C3 KO cells, excluding a role for endogenous C3. In view of the cellular source of properdin, interaction with myeloid cells was examined. Properdin bound to the surface of viable monocyte-derived pro- and anti-inflammatory macrophages, but not to DCs. Binding was demonstrated for purified properdin as well as fractionated P2, P3, and P4 properdin oligomers. Binding contributed to local complement activation as determined by C3 and C5b-9 deposition on the cell surfaces and seems a prerequisite for alternative pathway activation. Interaction of properdin with cell surfaces could be inhibited with the tick protein Salp20 and by different polysaccharides, depending on sulfation and chain length. These data identify properdin as a factor interacting with different cell surfaces, being either dead or alive, contributing to the local stimulation of complement activation.</p
- …