1,403 research outputs found

    Development and validation of clinical profiles of patients hospitalized due to behavioral and psychological symptoms of dementia.

    Get PDF
    Patients hospitalized on acute psychogeriatric wards are a heterogeneous population. Cluster analysis is a useful statistical method for partitioning a sample of patients into well separated groups of patients who present common characteristics. Several patient profile studies exist, but they are not adapted to acutely hospitalized psychogeriatric patients with cognitive impairment. The present study aims to partition patients hospitalized due to behavioral and psychological symptoms of dementia into profiles based on a global evaluation of mental health using cluster analysis. Using nine of the 13 items from the Health of the Nation Outcome Scales for elderly people (HoNOS65+), data were collected from a sample of 542 inpatients with dementia who were hospitalized between 2011 and 2014 in acute psychogeriatric wards of a Swiss university hospital. An optimal clustering solution was generated to represent various profiles, by using a mixed approach combining hierarchical and non-hierarchical (k-means) cluster analyses associated with a split-sample cross-validation. The quality of the clustering solution was evaluated based on a cross-validation, on a k-means method with 100 random initial seeds, on validation indexes, and on clinical interpretation. The final solution consisted of four clinically distinct and homogeneous profiles labeled (1) BPSD-affective, (2) BPSD-functional, (3) BPSD-somatic and (4) BPSD-psychotic according to their predominant clinical features. The four profiles differed in cognitive status, length of hospital stay, and legal admission status. In the present study, clustering methods allowed us to identify four profiles with distinctive characteristics. This clustering solution may be developed into a classification system that may allow clinicians to differentiate patient needs in order to promptly identify tailored interventions and promote better allocation of available resources

    The Savvidy ``ferromagnetic vacuum'' in three-dimensional lattice gauge theory

    Full text link
    The vacuum effective potential of three-dimensional SU(2) lattice gauge theory in an applied color-magnetic field is computed over a wide range of field strengths. The background field is induced by an external current, as in continuum field theory. Scaling and finite volume effects are analyzed systematically. The first evidence from lattice simulations is obtained of the existence of a nontrivial minimum in the effective potential. This supports a ``ferromagnetic'' picture of gluon condensation, proposed by Savvidy on the basis of a one-loop calculation in (3+1)-dimensional QCD.Comment: 9pp (REVTEX manuscript). Postscript figures appende

    Unstable Modes in Three-Dimensional SU(2) Gauge Theory

    Full text link
    We investigate SU(2) gauge theory in a constant chromomagnetic field in three dimensions both in the continuum and on the lattice. Using a variational method to stabilize the unstable modes, we evaluate the vacuum energy density in the one-loop approximation. We compare our theoretical results with the outcomes of the numerical simulations.Comment: 24 pages, REVTEX 3.0, 3 Postscript figures included. (the whole postscript file (text+figures) is available on request from [email protected]

    A Non-Abelian Variation on the Savvidy Vacuum of the Yang-Mills Gauge Theory

    Full text link
    As a prelude to a truly non-perturbative evaluation of the effective potential in terms of lattice QCD, the one loop effective potential for a non-Abelian gauge configuration is calculated using the background field method. Through a non-trivial correlation between the space and color orientations the new background field avoids the possible coordinate singularity, DetBia=0{\rm Det}B_i^a=0, observed recently by Ken Johnson and his collaborators in their Schr\"{o}dinger functional study of the SU(2) Yang-Mills theory. In addition, since our ansatz generates a constant color magnetic field through the commutator terms rather than derivative terms, many of the technical drawbacks the Savvidy ansatz suffers on a lattice can be avoided. Our one loop study yields qualitatively the same result as that of Savvidy's.Comment: 9 pages, preprint BU-HEP-93-2

    Abelian Dominance of Chiral Symmetry Breaking in Lattice QCD

    Full text link
    Calculations of the chiral condensate on the lattice using staggered fermions and the Lanczos algorithm are presented. Four gauge fields are considered: the quenched non-Abelian field, an Abelian projected field, and monopole and photon fields further decomposed from the Abelian field. Abelian projection is performed in maximal Abelian gauge and in Polyakov gauge. The results show that monopoles in maximal Abelian gauge largely reproduce the chiral condensate values of the full non-Abelian theory, in both SU(2) and SU(3) color.Comment: 13 pages in RevTex including 6 figures, uucompressed, self-extractin

    Free Energy of an SU(2) Model of (2+1)-dimensional QCD in the Constant Condensate Background

    Get PDF
    Gluon and quark contributions to the thermodynamic potential (free energy) of a (2+1)-dimensional QCD model at finite temperature in the background of a constant homogeneous chromomagnetic field H combined with A_0 condensate are calculated. The role of the tachyonic mode in the gluon energy spectrum is discussed. A possibility of the free energy global minimum generation at nonzero values of H and A_0 condensates is investigated.Comment: LaTeX 2e, 14 pages, 6 eps figures, some miscalculations were correcte

    Gluon Condensation in Nonperturbative Flow Equations

    Get PDF
    We employ nonperturbative flow equations for an investigation of the effective action in Yang-Mills theories. We compute the effective action Γ[B]\Gamma[B] for constant color magnetic fields BB and examine Savvidy's conjecture of an unstable perturbative vacuum. Our results indicate that the absolute minimum of Γ[B]\Gamma[B] occurs for B=0. Gluon condensation is described by a nonvanishing expectation value of the regularized composite operator FμνFμνF_{\mu\nu}F^{\mu\nu} which agrees with phenomenological estimates.Comment: 64 pages, late

    Exact Results and Holography of Wilson Loops in N=2 Superconformal (Quiver) Gauge Theories

    Full text link
    Using localization, matrix model and saddle-point techniques, we determine exact behavior of circular Wilson loop in N=2 superconformal (quiver) gauge theories. Focusing at planar and large `t Hooft couling limits, we compare its asymptotic behavior with well-known exponential growth of Wilson loop in N=4 super Yang-Mills theory. For theory with gauge group SU(N) coupled to 2N fundamental hypermultiplets, we find that Wilson loop exhibits non-exponential growth -- at most, it can grow a power of `t Hooft coupling. For theory with gauge group SU(N) x SU(N) and bifundamental hypermultiplets, there are two Wilson loops associated with two gauge groups. We find Wilson loop in untwisted sector grows exponentially large as in N=4 super Yang-Mills theory. We then find Wilson loop in twisted sector exhibits non-analytic behavior with respect to difference of two `t Hooft coupling constants. By letting one gauge coupling constant hierarchically larger/smaller than the other, we show that Wilson loops in the second type theory interpolate to Wilson loop in the first type theory. We infer implications of these findings from holographic dual description in terms of minimal surface of dual string worldsheet. We suggest intuitive interpretation that in both type theories holographic dual background must involve string scale geometry even at planar and large `t Hooft coupling limit and that new results found in the gauge theory side are attributable to worldsheet instantons and infinite resummation therein. Our interpretation also indicate that holographic dual of these gauge theories is provided by certain non-critical string theories.Comment: 52 pages, 7 figures v2. more figures embedded v3. minor stylistic changes, v4. published versio

    Dual Superconductor Scenario of Confinement: A Systematic Study of Gribov Copy Effects

    Full text link
    We perform a study of the effects from maximal abelian gauge Gribov copies in the context of the dual superconductor scenario of confinement, on the basis of a novel approach for estimation of systematic uncertainties from incomplete gauge fixing. We present numerical results, in SU(2) lattice gauge theory, using the overrelaxed simulated annealing gauge fixing algorithm. We find abelian and non-abelian string tensions to differ significantly, their ratio being 0.92(4) at BETA = 2.5115. An approximate factorization of the abelian potential into monopole and photon contributions has been confirmed, the former giving rise to the abelian string tension.Comment: 35 pages uucompressed LaTeX with 10 encapsuled postscript figure

    Mesonic decay constants in lattice NRQCD

    Get PDF
    Lattice NRQCD with leading finite lattice spacing errors removed is used to calculate decay constants of mesons made up of heavy quarks. Quenched simulations are done with a tadpole improved gauge action containing plaquette and six-link rectangular terms. The tadpole factor is estimated using the Landau link. For each of the three values of the coupling constant considered, quarkonia are calculated for five masses spanning the range from charmonium through bottomonium, and one set of quark masses is tuned to the B(c). "Perturbative" and nonperturbative meson masses are compared. One-loop perturbative matching of lattice NRQCD with continuum QCD for the heavy-heavy vector and axial vector currents is performed. The data are consistent with the vector meson decay constants of quarkonia being proportional to the square root of their mass and the B(c) decay constant being equal to 420(13) MeV.Comment: 25 pages in REVTe
    corecore