1,699 research outputs found
Constrained Curve Fitting
We survey techniques for constrained curve fitting, based upon Bayesian
statistics, that offer significant advantages over conventional techniques used
by lattice field theorists.Comment: Lattice2001(plenary); plenary talk given by G.P. Lepage at Lattice
2001 (Berlin); 9 pages, 5 figures (postscript specials
Highly Improved Naive and Staggered Fermions
We present a new action for highly improved staggered fermions. We show that
perturbative calculations for the new action are well-behaved where those of
the conventional staggered action are badly behaved. We discuss the effects of
the new terms in controlling flavor mixing, and discuss the design of operators
for the action.Comment: Contribution to Lattice2001(improvement); 3 page
B Physics on the Lattice: Present and Future
Recent experimental measurements and lattice QCD calculations are now
reaching the precision (and accuracy) needed to over-constrain the CKM
parameters and . In this brief review, I discuss the
current status of lattice QCD calculations needed to connect the experimental
measurements of meson properties to quark flavor-changing parameters.
Special attention is given to , which is becoming a competitive
way to determine , and to mixings, which now include
reliable extrapolation to the physical light quark mass. The combination of the
recent measurement of the mass difference and current lattice
calculations dramatically reduces the uncertainty in . I present an
outlook for reducing dominant lattice QCD uncertainties entering CKM fits, and
I remark on lattice calculations for other decay channels.Comment: Invited brief review for Mod. Phys. Lett. A. 15 pages. v2: typos
corrected, references adde
Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy
Perturbative coefficients for Wilson loops and the static-quark self-energy
are extracted from Monte Carlo simulations at weak coupling. The lattice
volumes and couplings are chosen to ensure that the lattice momenta are all
perturbative. Twisted boundary conditions are used to eliminate the effects of
lattice zero modes and to suppress nonperturbative finite-volume effects due to
Z(3) phases. Simulations of the Wilson gluon action are done with both periodic
and twisted boundary conditions, and over a wide range of lattice volumes (from
to ) and couplings (from to ).
A high precision comparison is made between the simulation data and results
from finite-volume lattice perturbation theory. The Monte Carlo results are
shown to be in excellent agreement with perturbation theory through second
order. New results for third-order coefficients for a number of Wilson loops
and the static-quark self-energy are reported.Comment: 36 pages, 15 figures, REVTEX documen
Unquenched Charmonium with NRQCD - Lattice 2000
We present results from a series of NRQCD simulations of the charmonium
system, both in the quenched approximation and with n_f = 2 dynamical quarks.
The spectra show evidence for quenching effects of ~10% in the S- and
P-hyperfine splittings. We compare this with other systematic effects.
Improving the NRQCD evolution equation altered the S-hyperfine by as much as 20
MeV, and we estimate radiative corrections may be as large as 40%.Comment: Lattice 2000 (Heavy Quark Physics
Adjoint "quarks" on coarse anisotropic lattices: Implications for string breaking in full QCD
A detailed study is made of four dimensional SU(2) gauge theory with static
adjoint ``quarks'' in the context of string breaking. A tadpole-improved action
is used to do simulations on lattices with coarse spatial spacings ,
allowing the static potential to be probed at large separations at a
dramatically reduced computational cost. Highly anisotropic lattices are used,
with fine temporal spacings , in order to assess the behavior of the
time-dependent effective potentials. The lattice spacings are determined from
the potentials for quarks in the fundamental representation. Simulations of the
Wilson loop in the adjoint representation are done, and the energies of
magnetic and electric ``gluelumps'' (adjoint quark-gluon bound states) are
calculated, which set the energy scale for string breaking. Correlators of
gauge-fixed static quark propagators, without a connecting string of spatial
links, are analyzed. Correlation functions of gluelump pairs are also
considered; similar correlators have recently been proposed for observing
string breaking in full QCD and other models. A thorough discussion of the
relevance of Wilson loops over other operators for studies of string breaking
is presented, using the simulation results presented here to support a number
of new arguments.Comment: 22 pages, 14 figure
An Algorithmic Approach to Quantum Field Theory
The lattice formulation provides a way to regularize, define and compute the
Path Integral in a Quantum Field Theory. In this paper we review the
theoretical foundations and the most basic algorithms required to implement a
typical lattice computation, including the Metropolis, the Gibbs sampling, the
Minimal Residual, and the Stabilized Biconjugate inverters. The main emphasis
is on gauge theories with fermions such as QCD. We also provide examples of
typical results from lattice QCD computations for quantities of
phenomenological interest.Comment: 44 pages, to be published in IJMP
Unstable Modes in Three-Dimensional SU(2) Gauge Theory
We investigate SU(2) gauge theory in a constant chromomagnetic field in three
dimensions both in the continuum and on the lattice. Using a variational method
to stabilize the unstable modes, we evaluate the vacuum energy density in the
one-loop approximation. We compare our theoretical results with the outcomes of
the numerical simulations.Comment: 24 pages, REVTEX 3.0, 3 Postscript figures included. (the whole
postscript file (text+figures) is available on request from
[email protected]
Chiral Symmetry Breaking and Cooling in Lattice QCD
Chiral symmetry breaking is calculated as a function of cooling in quenched
lattice QCD. A non-zero signal is found for the chiral condensate beyond one
hundred cooling steps, suggesting that there is chiral symmetry breaking
associated with instantons. Quantitatively, the chiral condensate in cooled
gauge field configurations is small compared to the value without cooling.Comment: 11 pages in REVTEX including 4 PS figures embedded using psfig.sty,
uuencode
- …