1,449 research outputs found

    Quantum Monte Carlo scheme for frustrated Heisenberg antiferromagnets

    Full text link
    When one tries to simulate quantum spin systems by the Monte Carlo method, often the 'minus-sign problem' is encountered. In such a case, an application of probabilistic methods is not possible. In this paper the method has been proposed how to avoid the minus sign problem for certain class of frustrated Heisenberg models. The systems where this method is applicable are, for instance, the pyrochlore lattice and the J1J2J_1-J_2 Heisenberg model. The method works in singlet sector. It relies on expression of wave functions in dimer (pseudo)basis and writing down the Hamiltonian as a sum over plaquettes. In such a formulation, matrix elements of the exponent of Hamiltonian are positive.Comment: 19 LaTeX pages, 6 figures, 1 tabl

    Neutron-proton analyzing power at 12 MeV and inconsistencies in parametrizations of nucleon-nucleon data

    Get PDF
    We present the most accurate and complete data set for the analyzing power Ay(theta) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at En = 12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model study.Comment: Six pages, four figures, one table, to be published in Physics Letters

    Transport in the 3-dimensional Anderson model: an analysis of the dynamics on scales below the localization length

    Full text link
    Single-particle transport in disordered potentials is investigated on scales below the localization length. The dynamics on those scales is concretely analyzed for the 3-dimensional Anderson model with Gaussian on-site disorder. This analysis particularly includes the dependence of characteristic transport quantities on the amount of disorder and the energy interval, e.g., the mean free path which separates ballistic and diffusive transport regimes. For these regimes mean velocities, respectively diffusion constants are quantitatively given. By the use of the Boltzmann equation in the limit of weak disorder we reveal the known energy-dependencies of transport quantities. By an application of the time-convolutionless (TCL) projection operator technique in the limit of strong disorder we find evidence for much less pronounced energy dependencies. All our results are partially confirmed by the numerically exact solution of the time-dependent Schroedinger equation or by approximative numerical integrators. A comparison with other findings in the literature is additionally provided.Comment: 23 pages, 10 figure

    Efficiency of symmetric targeting for finite-T DMRG

    Full text link
    Two targeting schemes have been known for the density matrix renormalization group (DMRG) applied to non-Hermitian problems; one uses an asymmetric density matrix and the other uses symmetric density matrix. We compare the numerical efficiency of these two targeting schemes when they are used for the finite temperature DMRG.Comment: 4 pages, 3 Postscript figures, REVTe

    The crystal structure of triphenylene

    Full text link

    Experimental implementation of an adiabatic quantum optimization algorithm

    Get PDF
    We report the realization of a nuclear magnetic resonance computer with three quantum bits that simulates an adiabatic quantum optimization algorithm. Adiabatic quantum algorithms offer new insight into how quantum resources can be used to solve hard problems. This experiment uses a particularly well suited three quantum bit molecule and was made possible by introducing a technique that encodes general instances of the given optimization problem into an easily applicable Hamiltonian. Our results indicate an optimal run time of the adiabatic algorithm that agrees well with the prediction of a simple decoherence model.Comment: REVTeX, 5 pages, 4 figures, improved lay-out; accepted for publication in Physical Review Letter

    Moderate deviations for the determinant of Wigner matrices

    Full text link
    We establish a moderate deviations principle (MDP) for the log-determinant logdet(Mn)\log | \det (M_n) | of a Wigner matrix MnM_n matching four moments with either the GUE or GOE ensemble. Further we establish Cram\'er--type moderate deviations and Berry-Esseen bounds for the log-determinant for the GUE and GOE ensembles as well as for non-symmetric and non-Hermitian Gaussian random matrices (Ginibre ensembles), respectively.Comment: 20 pages, one missing reference added; Limit Theorems in Probability, Statistics and Number Theory, Springer Proceedings in Mathematics and Statistics, 201

    Metamagnetism in the 2D Hubbard Model with easy axis

    Full text link
    Although the Hubbard model is widely investigated, there are surprisingly few attempts to study the behavior of such a model in an external magnetic field. Using the Projector Quantum Monte Carlo technique, we show that the Hubbard model with an easy axis exhibits metamagnetic behavior if an external field is turned on. For the case of intermediate correlations strength UU, we observe a smooth transition from an antiferromagnetic regime to a paramagnetic phase. While the staggered magnetization will decrease linearly up to a critical field BcB_c, uniform magnetization develops only for fields higher than BcB_c.Comment: RevTeX 5 pages + 2 postscript figures (included), accepted for PRB Rapid Communication

    Chaos, containment and change: responding to persistent offending by young people

    Get PDF
    This article reviews policy developments in Scotland concerning 'persistent young offenders' and then describes the design of a study intended to assist a local planning group in developing its response. The key findings of a review of casefiles of young people involved in persistent offending are reported. It emerges that youth crime and young people involved in offending are more complex and heterogeneous than is sometimes assumed. This, along with a review of some literature about desistance from offending, reaffirms the need for properly individualised interventions. Studies of 'desisters' suggest the centrality of effective and engaging working relationships in this process. However, these studies also re-assert the significance of the social contexts of workers’ efforts to bring 'change' out of 'chaos'. We conclude therefore that the 'new correctionalism' must be tempered with appreciation of the social exclusion of young people who offend

    Product Wave Function Renormalization Group: construction from the matrix product point of view

    Full text link
    We present a construction of a matrix product state (MPS) that approximates the largest-eigenvalue eigenvector of a transfer matrix T, for the purpose of rapidly performing the infinite system density matrix renormalization group (DMRG) method applied to two-dimensional classical lattice models. We use the fact that the largest-eigenvalue eigenvector of T can be approximated by a state vector created from the upper or lower half of a finite size cluster. Decomposition of the obtained state vector into the MPS gives a way of extending the MPS, at the system size increment process in the infinite system DMRG algorithm. As a result, we successfully give the physical interpretation of the product wave function renormalization group (PWFRG) method, and obtain its appropriate initial condition.Comment: 8 pages, 8 figure
    corecore