746 research outputs found

    Strings in extremal BTZ black holes

    Full text link
    We study the spectrum of the worldsheet theory of the bosonic closed string in the massless and extremal rotating BTZ black holes. We use a hyperbolic Wakimoto representation of the SL(2,R) currents to construct vertex operators for the string modes on these backgrounds. We argue that there are tachyons in the twisted sector, but these are not localised near the horizon. We study the relation to the null orbifold in the limit of vanishing cosmological constant. We also discuss the problem of extending this analysis to the supersymmetric case.Comment: 20 pages, no figure

    Massless BTZ black holes in minisuperspace

    Full text link
    We study aspects of the propagation of strings on BTZ black holes. After performing a careful analysis of the global spacetime structure of generic BTZ black holes, and its relation to the geometry of the SL(2,R) group manifold, we focus on the simplest case of the massless BTZ black hole. We study the SL(2,R) Wess-Zumino-Witten model in the worldsheet minisuperspace limit, taking into account special features associated to the Lorentzian signature of spacetime. We analyse the two- and three-point functions in the pointparticle limit. To lay bare the underlying group structure of the correlation functions, we derive new results on Clebsch-Gordan coefficients for SL(2,R) in a parabolic basis. We comment on the application of our results to string theory in singular time-dependent orbifolds, and to a Lorentzian version of the AdS/CFT correspondence.Comment: 28 pages, v2: reference adde

    Master Equations for Extended Lagrangian BRST Symmetries

    Full text link
    Starting from the requirement that a Lagrangian field theory be invariant under both Schwinger-Dyson BRST and Schwinger-Dyson anti-BRST symmetry, we derive the BRST--anti-BRST analogue of the Batalin-Vilkovisky formalism. This is done through standard Lagrangian gauge fixing respecting the extended BRST symmetry. The solutions of the resulting Master Equation and the gauge-fixing procedure for the quantum action can be brought into forms that coincide with those obtained earlier on algebraic grounds by Batalin, Lavrov and Tyutin.Comment: 12 pages, LaTeX, KUL-TF-93/04 and CERN-TH-6800/9

    Global Anomalies in the Batalin Vilkovisky Quantization

    Get PDF
    The Batalin Vilkovisky (BV) quantization provides a general procedure for calculating anomalies associated to gauge symmetries. Recent results show that even higher loop order contributions can be calculated by introducing an appropriate regularization-renormalization scheme. However, in its standard form, the BV quantization is not sensible to quantum violations of the classical conservation of Noether currents, the so called global anomalies. We show here that the BV field antifield method can be extended in such a way that the Ward identities involving divergencies of global Abelian currents can be calculated from the generating functional, a result that would not be obtained by just associating constant ghosts to global symmetries. This extension, consisting of trivially gauging the global Abelian symmetries, poses no extra obstruction to the solution of the master equation, as it happens in the case of gauge anomalies. We illustrate the procedure with the axial model and also calculating the Adler Bell Jackiw anomaly.Comment: We emphasized the fact that our procedure only works for the case of Abelian global anomalies. Section 3 was rewritten and some references were added. 12 pages, LATEX. Revised version that will appear in Phys. Rev.

    Removing Singularities

    Get PDF
    Big bang/crunch curvature singularities in exact CFT string backgrounds can be removed by turning on gauge fields. This is described within a family of {SL(2)xSU(2)xU(1)_x}/{U(1)xU(1)} quotient CFTs. Uncharged incoming wavefunctions from the ``whiskers'' of the extended universe can be fully reflected if and only if a big bang/crunch curvature singularity, from which they are scattered, exists. Extended BTZ-like singularities remain as long as U(1)_x is compact.Comment: 21 pages, harvma

    Interactions of Generated Weather Raster and Soil Profiles in Simulating Adaptive Crop Management and Consequent Yields for Five Major Crops throughout a Region in Southern Germany

    Get PDF
    Klimaanpassung und MitigationThe ability of bioeconomic simulation modelling to realistically predict agricultural adaptation is limited by the degree of detail in crucial model components. Model robustness must be tested before localized calibrations can be applied to regions of heterogenous environmental conditions. The agent-based model FARMACTOR was used to simulate the timing of field management actions (planting, harvest etc.) in response to environmental conditions, and consequent yields of winter wheat, barley and rapeseed, spring barley and silage maize as the predominant crops in a distinct region of Germany, by linking weather data and the crop growth simulation model EXPERT-N. The integrated models were calibrated to observed experimental data and official phenological observations and then run from 1990 to 2009, forced with climate data from ERA-interim Reanalyses data which was downscaled with the Weather and Research Forecast (WRF) model to a 12 X 12 km² grid. Variability in regional soils was replicated with 10 different soil profiles mapped at 1/25,000 scale. The nature of the forcing climate data dictates temporal aggregation for analysis, so that validity is examined by comparing mean simulated planting and harvest dates and yields to official records in the area. The mean predicted planting dates are very close to observations over the period, within a few days of observations, but show less variance. Harvest dates are accurately predicted as well, within one to two weeks, and the variances are closer to observations. Predicted winter wheat yields are well simulated in comparison to observed data, but maize yields are underestimated, while winter and spring barley and winter rapeseed yields are greater than observed district ("Landkreis") yields. The degree of variance in simulated yields is acceptable in wheat, winter barley and maize, but excessive in spring barley and winter rapeseed. Cross-sectional examination of yields shows that the different soil profiles are responsible for more yield variance than simulated weather cells in all crops. While the coupled models appear accurate in predicting crop management dates and physiological development, the inaccuracy in yields in all crops except winter wheat calls into question the reliability of the integrated models when applied, as is, outside of calibration conditions. That soil parameterization is responsible for more variance than generated weather is helpful in seeking to improve performance and encouraging in terms of the method of weather generation. Reliable extension of the coupled models to include all soils in an area together with artificial spatial climatic variability may require regionalized calibration to increase crop model stability

    Two-dimensional interactions between a BF-type theory and a collection of vector fields

    Full text link
    Consistent interactions that can be added to a two-dimensional, free abelian gauge theory comprising a special class of BF-type models and a collection of vector fields are constructed from the deformation of the solution to the master equation based on specific cohomological techniques. The deformation procedure modifies the Lagrangian action, the gauge transformations, as well as the accompanying algebra of the interacting model.Comment: LaTeX 2e, 31 page

    Massless particles on supergroups and AdS3 x S3 supergravity

    Get PDF
    Firstly, we study the state space of a massless particle on a supergroup with a reparameterization invariant action. After gauge fixing the reparameterization invariance, we compute the physical state space through the BRST cohomology and show that the quadratic Casimir Hamiltonian becomes diagonalizable in cohomology. We illustrate the general mechanism in detail in the example of a supergroup target GL(1|1). The space of physical states remains an indecomposable infinite dimensional representation of the space-time supersymmetry algebra. Secondly, we show how the full string BRST cohomology in the particle limit of string theory on AdS3 x S3 renders the quadratic Casimir diagonalizable, and reduces the Hilbert space to finite dimensional representations of the space-time supersymmetry algebra (after analytic continuation). Our analysis provides an efficient way to calculate the Kaluza-Klein spectrum for supergravity on AdS3 x S3. It may also be a step towards the identification of an interesting and simpler subsector of logarithmic supergroup conformal field theories, relevant to string theory.Comment: 16 pages, 10 figure

    Quantum mechanical path integrals and thermal radiation in static curved spacetimes

    Get PDF
    The propagator of a spinless particle is calculated from the quantum mechanical path integral formalism in static curved spacetimes endowed with event-horizons. A toy model, the Gui spacetime, and the 2D and 4D Schwarzschild black holes are considered. The role of the topology of the coordinates configuration space is emphasised in this framework. To cover entirely the above spacetimes with a single set of coordinates, tortoise coordinates are extended to complex values. It is shown that the homotopic properties of the complex tortoise configuration space imply the thermal behaviour of the propagator in these spacetimes. The propagator is calculated when end points are located in identical or distinct spacetime regions separated by one or several event-horizons. Quantum evolution through the event-horizons is shown to be unitary in the fifth variable.Comment: 22 pages, 10 figure

    Stereotactic ablative body radiotherapy combined with immunotherapy: Present status and future perspectives

    Get PDF
    Radiotherapy is along with surgery and chemotherapy one of the prime treatment modalities in cancer. It is applied in the primary, neoadjuvant as well as the adjuvant setting. Radiation techniques have rapidly evolved during the past decade enabling the delivery of high radiation doses, reducing side-effects in tumour-adjacent normal tissues. While increasing local tumour control, current and future efforts ought to deal with microscopic disease at a distance of the primary tumour, ultimately responsible for disease-progression. This review explores the possibility of bimodal treatment combining radiotherapy with immunotherapy
    • …
    corecore