200 research outputs found
Le "faire commun" au Nunavik : pour une gestion collaborative et éthique des ressources minières
En tant que moteur essentiel de la croissance économique du modèle sociétal dominant,
l’exploitation des ressources naturelles implique néanmoins un nombre considérable
d’externalités négatives, autant sur les écosystèmes que sur les populations humaines. Au
Québec, l’industrie minière déployée sur des territoires autochtones dans le cadre du Plan Nord
n’échappe pas à un tel constat. En dépit des bénéfices économiques que cette industrie peut
apporter aux communautés locales, le bien-être et l’intégrité culturelle de ces dernières se
voient menacés par des pratiques de l’industrie qui demeurent peu sensibles aux implications
pratiques des différences entre la vision du monde occidentale et celle des peuples autochtones.
L’objectif poursuivi dans le cadre de cet essai est de formuler les bases d’une réflexion selon
laquelle l’exploitation minière opérée dans la région de l’Arctique québécois, le Nunavik, puisse
tenir compte de la cosmologie du peuple inuit en s’appuyant notamment sur la philosophie du
« faire commun », afin que cette industrie soit plus respectueuse de l’identité culturelle et du
bien-être de ce peuple autochtone.
En partant de l’expérience du peuple māori en Nouvelle-Zélande, cet essai a tenté de démontrer
qu’il existait, à travers la philosophie du « faire commun », d’autres façons d’envisager et de
pratiquer l’exploitation et la gestion des ressources naturelles, dont les ressources minières. Le
présent travail ne permet certes pas d’aboutir à un ensemble de recommandations ou à un guide
prêt à être appliqué. Il sollicite plutôt une remise en question des fondements de notre société
occidentale en faveur d’une pluralisation de la pensée permettant l’entretien d’un dialogue
interculturel qui ouvre sur des manières diverses d’appréhender les relations, non seulement au
sein de la communauté humaine, mais également avec toutes les entités qui constituent notre
environnement. Le « faire commun » exhorte finalement à apprendre à vivre les uns à côté des
autres plutôt que les uns contre les autres
Ammonium dihydrogen (1-ammoniopentane-1,1-diyl)diphosphonate
The title compound, NH4
+·C5H14NO6P2
−, was obtained from 1-ammonio-1-phosphonopentane-1-phosphonic acid and ammonium hydroxide in aqueous solution. The asymmetric unit of title compound contains one molecule, which consists of an ammonium cation and an aminodiphosphonic anion with the H atoms transferred from the phosphonic acid group to the amino group. The crystal structure shows a three-dimensional network of O—H⋯O and N—H⋯O hydrogen bonds which stabilize the structure
{[1-(2-Aminoethylamino)-1-methylethyl]phosphonato-κ3 N,N′,O}chloridopalladium(II) monohydrate
In the title compound, [Pd(C5H14N2O3P)Cl]·H2O, the Pd(II) atom shows a slightly distorted square-planar geometry and forms two five-membered metallacycles, which both exhibit half-chair conformations. The crystal structure consists of layers propogating in the [100] direction which are connected into a three-dimensional network by strong N—H⋯Cl, N—H⋯O and O—H⋯O hydrogen bonds
Oxonium ammonio(cyclopropyl)methylenebis(hydrogenphosphonate) monohydrate
The title compound, H3O+·C4H10NO6P2
−·H2O, was obtained from the reaction of cyclopropanecarbonitrile with PCl3, followed by dropwise addition of water. The asymmetric unit comprises an oxonium cation, a zwitterionic monoanion containing a positively charged ammonium group and two negatively charged phosphonic acid residues and a water molecule of crystallization. The hydroxonium cation and water molecule are hydrogen bonded to the anion and further N—H⋯O and O—H⋯O bonds create a three-dimensional network
1-Ammonio-1-phosphonopentane-1-phosphonic acid
The title compound, C5H15NO6P2, was obtained by the reaction of pentanenitrile with PCl3 followed by the dropwise addition of water. The asymmetric unit contains one molecule, which exists as a zwitterion with a positive charge on the –NH3 group and a negative charge on one of the phosphonic O atoms. The crystal structure displays N—H⋯O and O—H⋯O hydrogen bonding, which creates a three-dimensional network
Ammonium 1-ammonioethane-1,1-diylbis(hydrogenphosphonate) dihydrate
The title compound, NH4
+·C2H8NO6P2
−·2H2O, was obtained by the reaction between 1-aminoethane-1,1-diyldiphosphonic acid and ammonium hydroxide (1:1) in an aqueous solution. The asymmetric unit contains one anion with two H atoms transferred from the phosphonic acid groups to the amino group of the anion and to an ammonia molecule, giving an ammonium cation. The structure displays N—H⋯O and O—H⋯O hydrogen bonding, which creates a three-dimensional network
Poly[[μ-(1-ammonioethane-1,1-diyl)bis(hydrogenphosphonato)]diaquachloridodisodium]: a powder X-ray diffraction study
The title compound, [Na2(C2H8NO6P2)Cl(H2O)2]n, has a polymeric two-dimensional structure extending parallel to (001). The asymmetric unit contains two Na+ cations located on a centre of symmetry and on a mirror plane, respectively, one half of a bis-phosphonate anion (the entire anion is completed by mirror symmetry), one chloride anion on a mirror plane and one water molecule in general positions. The two Na+ cations exhibit distorted octahedral NaCl2O4 coordination polyhedra, each consisting of two deprotonated O atoms of the bis-phosphonate anion, of two water molecules and of two chloride anions. Strong O—H⋯O hydrogen bonds between the –OH group and one of the free O atoms of the bis-phosphonate anion connect adjacent layers along [100], supported by N—H⋯Cl interactions. Intralayer O—H⋯O and N—H⋯O hydrogen bonds are also observed
Recent smell loss is the best predictor of COVID-19 among individuals with recent respiratory symptoms
In a preregistered, cross-sectional study we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC=0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4<10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable
- …