1,993 research outputs found
Compactness in Groups of Group-Valued Mappings
We introduce the concepts of extended equimeasurability and extended uniform quasiboundedness in groups of group-valued mappings endowed with a topology that generalizes the topology of convergence in measure. Quantitative characteristics modeled on these concepts allow us to estimate the Hausdorff measure of noncompactness in such a contest. Our results extend and encompass some generalizations of Frechet-Smulian and Ascoli-Arzela compactness criteria found in the literature
Regular measures of noncompactness and Ascoli-Arzela type compactness criteria in spaces of vector-valued functions
In this paper we estimate the Kuratowski and the Hausdorff measures of noncompactness of bounded subsets of spaces of vector-valued bounded functions and of vector-valued bounded differentiable functions. To this end, we use a quantitative characteristic modeled on a new equicontinuity-type concept and classical quantitative characteristics related to pointwise relative compactness. We obtain new regular measures of noncompactness in the spaces taken into consideration. The established inequalities reduce to precise formulas in some classes of subsets. We derive Ascoli-Arzela type compactness criteria
Rearrangement and Convergence in Spaces of Measurable Functions
We prove that the convergence of a sequence of functions in the space of measurable functions, with respect to the topology of convergence in measure, implies the convergence -almost everywhere ( denotes the Lebesgue measure) of the sequence of rearrangements. We obtain nonexpansivity of rearrangement on the space , and also on Orlicz spaces with respect to a finitely additive extended real-valued set function. In the space and in the space , of finite elements of an Orlicz space of a -additive set function, we introduce some parameters which estimate the Hausdorff measure of noncompactness. We obtain some relations involving these parameters when passing from a bounded set of , or , to the set of rearrangements
Massless Interacting Scalar Fields in de Sitter space
We present a method to compute the two-point functions for an scalar
field model in de Sitter spacetime, avoiding the well known infrared problems
for massless fields. The method is based on an exact treatment of the Euclidean
zero modes and a perturbative one of the nonzero modes, and involves a partial
resummation of the leading secular terms. This resummation, crucial to obtain a
decay of the correlation functions, is implemented along with a double
expansion in an effective coupling constant and in . The
results reduce to those known in the leading infrared approximation and
coincide with the ones obtained directly in Lorentzian de Sitter spacetime in
the large limit. The new method allows for a systematic calculation of
higher order corrections both in and in .Comment: 8 pages. Summarized version of JHEP 09 (2016) 117 [arXiv:1606.03481].
Published in the Proceedings of the 19th International Seminar on High Energy
Physics (QUARKS-2016
model in Euclidean de Sitter space: beyond the leading infrared approximation
We consider an scalar field model with quartic interaction in
-dimensional Euclidean de Sitter space. In order to avoid the problems of
the standard perturbative calculations for light and massless fields, we
generalize to the theory a systematic method introduced previously for a
single field, which treats the zero modes exactly and the nonzero modes
perturbatively. We compute the two-point functions taking into account not only
the leading infrared contribution, coming from the self-interaction of the zero
modes, but also corrections due to the interaction of the ultraviolet modes.
For the model defined in the corresponding Lorentzian de Sitter spacetime, we
obtain the two-point functions by analytical continuation. We point out that a
partial resummation of the leading secular terms (which necessarily involves
nonzero modes) is required to obtain a decay at large distances for massless
fields. We implement this resummation along with a systematic double expansion
in an effective coupling constant and in 1/N. We explicitly
perform the calculation up to the next-to-next-to-leading order in
and up to next-to-leading order in 1/N. The results reduce to
those known in the leading infrared approximation. We also show that they
coincide with the ones obtained directly in Lorentzian de Sitter spacetime in
the large N limit, provided the same renormalization scheme is used.Comment: 31 pages, 5 figures. Minor changes. Published versio
Hartree approximation in curved spacetimes revisited II: The semiclassical Einstein equations and de Sitter self-consistent solutions
We consider the semiclassical Einstein equations (SEE) in the presence of a
quantum scalar field with self-interaction . Working in the
Hartree truncation of the two-particle irreducible (2PI) effective action, we
compute the vacuum expectation value of the energy-momentum tensor of the
scalar field, which act as a source of the SEE. We obtain the renormalized SEE
by implementing a consistent renormalization procedure. We apply our results to
find self-consistent de Sitter solutions to the SEE in situations with or
without spontaneous breaking of the -symmetry.Comment: 32 pages, 4 figure
The Effects of Diethyldithiocarbamate (DDC) on the Astrocytic Cytoskeleton
The dithiocarbamates are a group of compounds that are used extensively in industry, agriculture and medicine. Exposure to these compounds has caused deleterious effects to both the central and peripheral nervous systems. Cultured rat hippocampal astroglia treated with 35 μg/ml diethyldithiocarbamate (DDC) in media were studied for alterations to the cytoskeleton. Examination by both immunohistochemistry and scanning electron microscopy revealed disruption of the cytoskeletal elements. This occurred in a progressive time-dependent manner. Electrophoretic patterns demonstrated two cytoskeletal protein alterations. The microtubular protein, β-tubulin, appeared to have an altered mobility while the major intermediate filament protein, glial fibrillary acidic protein (GF AP), was decreased. The cytoskeleton appears to be an important cellular target for injury by DDC exposure. This study has demonstrated that DDC induces alterations in the architecture of the cytoskeleton of astroglia and suggests that these changes involve microtubular and intermediate filament proteins
Stochastic particle creation: from the dynamical Casimir effect to cosmology
We study a stochastic version of the dynamical Casimir effect, computing the
particle creation inside a cavity produced by a random motion of one of its
walls. We first present a calculation perturbative in the amplitude of the
motion. We compare the stochastic particle creation with the deterministic
counterpart. Then we go beyond the perturbative evaluation using a stochastic
version of the multiple scale analysis, that takes into account stochastic
parametric resonance. We stress the relevance of the coupling between the
different modes induced by the stochastic motion. In the single-mode
approximation, the equations are formally analogous to those that describe the
stochastic particle creation in a cosmological context, that we rederive using
multiple scale analysis.Comment: 23 pages, no figure
- …