39 research outputs found

    IFNγ production in peripheral blood of early Lyme disease patients to hLFAα(L) (aa326-345)

    Get PDF
    BACKGROUND: It has been proposed that outer surface protein A (OspA) of Borrelia burgdorferi sensu stricto contains a T helper 1 (Th1) cell epitope that could play a role in an autoimmune response to hLFA1. METHODS: We used two peptides, hLFAα(L) (aa326-345) and Borrelia burgdorferi OspAB31 (aa164-183), as stimulating antigens to measure Th1 proinflammatory IFNγ cytokine production in peripheral blood of Lyme disease patients presenting with EM without history of arthritis, as well as in peripheral blood of healthy individuals. RESULTS: IFNγ responses to hLFA1 peptide were observed in 11 of 19 Lyme disease patients and in 3 of 15 healthy controls. In contrast, only 2 of 19 of the Lyme disease patients and none of the controls responded to the homologous OspAB31 peptide. CONCLUSIONS: IFNγ was produced in response to stimulation with peptide hLFAα(L) (aa326-345) in peripheral blood of 58% of patients with early Lyme disease without signs of arthritis, as well as in peripheral blood of 20% of healthy individuals, but not in response to stimulation with the homologous OspAB31 (aa164-183) peptide (p < 0.05). Our results suggest that reactivity to the hLFA1 peptide in peripheral blood may be the result of T cell degeneracy

    Prostaglandin E2 Synthesizing Enzymes in Rheumatoid Arthritis B Cells and the Effects of B Cell Depleting Therapy on Enzyme Expression

    Get PDF
    Introduction: B cells may play an important role in promoting immune activation in the rheumatoid synovium and can produce prostaglandin E-2 (PGE(2)) when activated. In its turn, PGE(2) formed by cyclooxygenase (COX) and microsomal prostaglandin E-2 synthase 1 (MPGES1) contributes to the rheumatoid arthritis (RA) pathological process. Therapeutic depletion of B cells results in important improvement in controlling disease activity in rheumatoid patients. Therefore we investigated the expression of PGE(2) pathway enzymes in RA B cells and evaluated the effects of B cell depleting therapy on their expression in RA tissue. Methods: B cells expressing MPGES1 and COX-2 were identified by flow cytometry in in vitro stimulated and control mononuclear cells isolated from synovial fluid and peripheral blood of RA patients. Synovial biopsies were obtained from 24 RA patients before and at two consecutive time points after rituximab therapy. Expression of MPGES1, COX-1 and COX-2, as well as interleukin (IL)-1 beta and IL-6, known inducers of MPGES1, was quantified in immunostained biopsy sections using computerized image analysis. Results: Expression of MPGES1 or COX-2 was significantly upregulated upon stimulation of B cells from blood and synovial fluid while control cells displayed no detectable enzymes. In synovial biopsy sections, the expression of MPGES1, COX-1 or COX-2 was resistant to rituximab therapy at 8 or 16 weeks after start of treatment. Furthermore expression of IL-1 beta in the synovial tissue remained unchanged, while IL-6 tended to decrease after therapy. Conclusions: Therapy with B cell depleting agents, although efficient in achieving good clinical and radiographic response in RA patients, leaves important inflammatory pathways in the rheumatoid synovium essentially unaffecte
    corecore