37 research outputs found
Fast optical control of spin in semiconductor interfacial structures
We report on a picosecond-fast optical removal of spin polarization from a
self-confined photo-carrier system at an undoped GaAs/AlGaAs interface
possessing superior long-range and high-speed spin transport properties. We
employed a modified resonant spin amplification technique with unequal
intensities of subsequent pump pulses to experimentally distinguish the
evolution of spin populations originating from different excitation laser
pulses. We demonstrate that the density of spins, which is injected into the
system by means of the optical orientation, can be controlled by reducing the
electrostatic confinement of the system using an additional generation of
photocarriers. It is also shown that the disturbed confinement recovers within
hundreds of picoseconds after which spins can be again photo-injected into the
system
Semiconductor Bloch equation analysis of optical Stark and Bloch-Siegert shifts in monolayers WSe and MoS
We report on the theoretical and experimental investigation of
valley-selective optical Stark and Bloch-Siegert shifts of exciton resonances
in monolayers WSe and MoS induced by strong circularly polarized
nonresonant optical fields. We predict and observe transient shifts of both 1sA
and 1sB exciton transitions in the linear interaction regime. The theoretical
description is based on semiconductor Bloch equations. The solutions of the
equations are obtained with a modified perturbation technique, which takes into
account many-body Coulomb interaction effects. These solutions allow to explain
the polarization dependence of the shifts and calculate their values
analytically. We found experimentally the limits of the applicability of the
theoretical description by observing the transient exciton spectra change due
to many-body effects at high field amplitudes of the driving wave.Comment: 20 pages, 9 figures, this manuscript is related to the "Giant
valley-selective Stark and Bloch-Siegert shifts of exciton resonances in
WSe and MoS monolayers" manuscrip
Giant valley-selective Stark and Bloch-Siegert shifts of exciton resonances in WSe and MoS monolayers
In this letter we demonstrate that the valley degeneracy of exciton states in
monolayers of WSe and MoS can be lifted by the interaction with strong
circularly-polarized infrared pulses with durations of only few periods of the
electric field whose photon energy is much lower than the energy of the
excitonic transition. The observed valley-sensitive blue shifts of excitonic
absorption lines are consequences of optical Stark and Bloch-Siegert shifts
acting exclusively on the opposite valleys of the monolayer. We measured the
transient valley-selective changes of sample reflectivity for 1sA as well as
for 1sB exciton transitions corresponding to the two most intensive resonances
in the studied materials. For the studied phenomena we developed a theoretical
description based on semiconductor Bloch equations, which goes beyond the
simple two-level model used in previous investigations. The theoretical
approach takes into account Coulomb many-body effects in the monolayer and
provides a unified description of both types of shifts. The detected
room-temperature excitonic energy shifts of up to 30\,meV pave the way for
practical applications of these effects.Comment: 6 pages, 3 figures, the manuscript is related to the "Semiconductor
Bloch equation analysis of optical Stark and Bloch-Siegert shifts in
monolayers WSe and MoS" manuscrip
Enhancement of the spin Hall voltage in a reverse-biased planar p-n junction
We report an experimental demonstration of a local amplification of the spin Hall voltage using an expanding depletion zone at a p-n junction in GaAs/AlGaAs Hall-bar microdevices. It is demonstrated that the depletion zone can be spatially expanded by applying reverse bias by at least 10 ÎĽm at low temperature. In the depleted regime, the spin Hall signals reached more than one order of magnitude higher values than in the normal regime at the same electrical current flowing through the microdevice. It is shown that the p-n bias has two distinct effects on the detected spin Hall signal. It controls the local drift field at the Hall cross which is highly nonlinear in the p-n bias due to the shift of the depletion front. Simultaneously, it produces a change in the spin-transport parameters due to the nonlinear change in the carrier density at the Hall cross with the p-n bias
Experimental observation of the optical spin transfer torque
The spin transfer torque is a phenomenon in which angular momentum of a spin
polarized electrical current entering a ferromagnet is transferred to the
magnetization. The effect has opened a new research field of electrically
driven magnetization dynamics in magnetic nanostructures and plays an important
role in the development of a new generation of memory devices and tunable
oscillators. Optical excitations of magnetic systems by laser pulses have been
a separate research field whose aim is to explore magnetization dynamics at
short time scales and enable ultrafast spintronic devices. We report the
experimental observation of the optical spin transfer torque, predicted
theoretically several years ago building the bridge between these two fields of
spintronics research. In a pump-and-probe optical experiment we measure
coherent spin precession in a (Ga,Mn)As ferromagnetic semiconductor excited by
circularly polarized laser pulses. During the pump pulse, the spin angular
momentum of photo-carriers generated by the absorbed light is transferred to
the collective magnetization of the ferromagnet. We interpret the observed
optical spin transfer torque and the magnetization precession it triggers on a
quantitative microscopic level. Bringing the spin transfer physics into optics
introduces a fundamentally distinct mechanism from the previously reported
thermal and non-thermal laser excitations of magnets. Bringing optics into the
field of spin transfer torques decreases by several orders of magnitude the
timescales at which these phenomena are explored and utilized.Comment: 11 pages, 4 figure
Investigation of magneto-structural phase transition in FeRh by reflectivity and transmittance measurements in visible and near-infrared spectral region
Magneto-structural phase transition in FeRh epitaxial layers was studied optically. It is shown that the transition between the low-temperature antiferromagnetic phase and the high-temperature ferromagnetic phase is accompanied by a rather large change of the optical response in the visible and near-infrared spectral ranges. This change is consistent with ab initio calculations of reflectivity and transmittance. Phase transition temperatures in a series of FeRh films with thicknesses ranging from 6 to 100 nm is measured thereby demonstrating the utility of the method to quickly characterise samples. Spatially resolved imaging of their magnetic properties with a micrometer resolution shows that the phase transition occurs at different temperatures in different parts of the sample
Experimental observation of the optical spin-orbit torque
Spin polarized carriers electrically injected into a magnet from an external
polarizer can exert a spin transfer torque (STT) on the magnetization. The phe-
nomenon belongs to the area of spintronics research focusing on manipulating
magnetic moments by electric fields and is the basis of the emerging
technologies for scalable magnetoresistive random access memories. In our
previous work we have reported experimental observation of the optical
counterpart of STT in which a circularly polarized pump laser pulse acts as the
external polarizer, allowing to study and utilize the phenomenon on several
orders of magnitude shorter timescales than in the electric current induced
STT. Recently it has been theoretically proposed and experimentally
demonstrated that in the absence of an external polarizer, carriers in a magnet
under applied electric field can develop a non-equilibrium spin polarization
due to the relativistic spin-orbit coupling, resulting in a current induced
spin-orbit torque (SOT) acting on the magnetization. In this paper we report
the observation of the optical counterpart of SOT. At picosecond time-scales,
we detect excitations of magnetization of a ferromagnetic semiconductor
(Ga,Mn)As which are independent of the polarization of the pump laser pulses
and are induced by non-equilibrium spin-orbit coupled photo-holes.Comment: 4 figure, supplementary information. arXiv admin note: text overlap
with arXiv:1101.104
A new and sensitive reaction rate method for spectrophotometric determination of trace amounts of thiourea in different water samples based on an induction period
BACKGROUNDAgrilus bigutattus (Fabricius) is a forest pest of increasing importance in the United Kingdom. The larvae damage weakened native oaks and are thought to contribute to premature tree death. Suspected links with acute oak decline (AOD) are not yet confirmed, but AOD-predisposed trees appear to become more susceptible to A. biguttatus attack. Thus, management may be necessary for control of this insect. To explore the possibility of monitoring beetle populations by baited traps, the host tree volatiles regulating A. biguttatus-oak interactions were studied. RESULTSBiologically active volatile organic compounds in dynamic headspace extracts of oak foliage and bark were identified initially by coupled gas chromatography-electroantennography (GC-EAG) and GC-mass spectrometry (GC-MS), and the structures were confirmed by GC coinjection with authentic compounds. Of two synthetic blends of these compounds comprising the active leaf volatiles, the simpler one containing three components evoked strongly positive behavioural responses in four-arm olfactometer tests with virgin females and males, although fresh leaf material was more efficient than the blend. The other blend, comprising a five-component mixture made up of bark volatiles, proved to be as behaviourally active for gravid females as bark tissue. CONCLUSIONSThese initial results on A. biguttatus chemical ecology reveal aspects of the role of attractive tree volatiles in the host-finding of beetles and underpin the development of semiochemically based surveillance strategies for this forest insect. (c) 2015 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry
Impact of AFM-induced nano-pits in a-Si:H films on silicon crystal growth
Conductive tips in atomic force microscopy (AFM) can be used to localize field-enhanced metal-induced solid-phase crystallization (FE-MISPC) of amorphous silicon (a-Si:H) at room temperature down to nanoscale dimensions. In this article, the authors show that such local modifications can be used to selectively induce further localized growth of silicon nanocrystals. First, a-Si:H films by plasma-enhanced chemical vapor deposition on nickel/glass substrates are prepared. After the FE-MISPC process, yielding both conductive and non-conductive nano-pits in the films, the second silicon layer at the boundary condition of amorphous and microcrystalline growth is deposited. Comparing AFM morphology and current-sensing AFM data on the first and second layers, it is observed that the second deposition changes the morphology and increases the local conductivity of FE-MISPC-induced pits by up to an order of magnitude irrespective of their prior conductivity. This is attributed to the silicon nanocrystals (<100 nm) that tend to nucleate and grow inside the pits. This is also supported by micro-Raman spectroscopy
Direct bandgap optical transitions in Si nanocrystals
The effect of quantum confinement on the direct bandgap of spherical Si
nanocrystals has been modelled theoretically. We conclude that the energy of
the direct bandgap at the -point decreases with size reduction: quantum
confinement enhances radiative recombination across the direct bandgap and
introduces its "red" shift for smaller grains. We postulate to identify the
frequently reported efficient blue emission (F-band) from Si nanocrystals with
this zero-phonon recombination. In a dedicated experiment, we confirm the "red"
shift of the F-band, supporting the proposed identification