37 research outputs found

    Fast optical control of spin in semiconductor interfacial structures

    Full text link
    We report on a picosecond-fast optical removal of spin polarization from a self-confined photo-carrier system at an undoped GaAs/AlGaAs interface possessing superior long-range and high-speed spin transport properties. We employed a modified resonant spin amplification technique with unequal intensities of subsequent pump pulses to experimentally distinguish the evolution of spin populations originating from different excitation laser pulses. We demonstrate that the density of spins, which is injected into the system by means of the optical orientation, can be controlled by reducing the electrostatic confinement of the system using an additional generation of photocarriers. It is also shown that the disturbed confinement recovers within hundreds of picoseconds after which spins can be again photo-injected into the system

    Semiconductor Bloch equation analysis of optical Stark and Bloch-Siegert shifts in monolayers WSe2_2 and MoS2_2

    Full text link
    We report on the theoretical and experimental investigation of valley-selective optical Stark and Bloch-Siegert shifts of exciton resonances in monolayers WSe2_2 and MoS2_2 induced by strong circularly polarized nonresonant optical fields. We predict and observe transient shifts of both 1sA and 1sB exciton transitions in the linear interaction regime. The theoretical description is based on semiconductor Bloch equations. The solutions of the equations are obtained with a modified perturbation technique, which takes into account many-body Coulomb interaction effects. These solutions allow to explain the polarization dependence of the shifts and calculate their values analytically. We found experimentally the limits of the applicability of the theoretical description by observing the transient exciton spectra change due to many-body effects at high field amplitudes of the driving wave.Comment: 20 pages, 9 figures, this manuscript is related to the "Giant valley-selective Stark and Bloch-Siegert shifts of exciton resonances in WSe2_2 and MoS2_2 monolayers" manuscrip

    Giant valley-selective Stark and Bloch-Siegert shifts of exciton resonances in WSe2_2 and MoS2_2 monolayers

    Get PDF
    In this letter we demonstrate that the valley degeneracy of exciton states in monolayers of WSe2_2 and MoS2_2 can be lifted by the interaction with strong circularly-polarized infrared pulses with durations of only few periods of the electric field whose photon energy is much lower than the energy of the excitonic transition. The observed valley-sensitive blue shifts of excitonic absorption lines are consequences of optical Stark and Bloch-Siegert shifts acting exclusively on the opposite valleys of the monolayer. We measured the transient valley-selective changes of sample reflectivity for 1sA as well as for 1sB exciton transitions corresponding to the two most intensive resonances in the studied materials. For the studied phenomena we developed a theoretical description based on semiconductor Bloch equations, which goes beyond the simple two-level model used in previous investigations. The theoretical approach takes into account Coulomb many-body effects in the monolayer and provides a unified description of both types of shifts. The detected room-temperature excitonic energy shifts of up to 30\,meV pave the way for practical applications of these effects.Comment: 6 pages, 3 figures, the manuscript is related to the "Semiconductor Bloch equation analysis of optical Stark and Bloch-Siegert shifts in monolayers WSe2_2 and MoS2_2" manuscrip

    Enhancement of the spin Hall voltage in a reverse-biased planar p-n junction

    Get PDF
    We report an experimental demonstration of a local amplification of the spin Hall voltage using an expanding depletion zone at a p-n junction in GaAs/AlGaAs Hall-bar microdevices. It is demonstrated that the depletion zone can be spatially expanded by applying reverse bias by at least 10 ÎĽm at low temperature. In the depleted regime, the spin Hall signals reached more than one order of magnitude higher values than in the normal regime at the same electrical current flowing through the microdevice. It is shown that the p-n bias has two distinct effects on the detected spin Hall signal. It controls the local drift field at the Hall cross which is highly nonlinear in the p-n bias due to the shift of the depletion front. Simultaneously, it produces a change in the spin-transport parameters due to the nonlinear change in the carrier density at the Hall cross with the p-n bias

    Experimental observation of the optical spin transfer torque

    Full text link
    The spin transfer torque is a phenomenon in which angular momentum of a spin polarized electrical current entering a ferromagnet is transferred to the magnetization. The effect has opened a new research field of electrically driven magnetization dynamics in magnetic nanostructures and plays an important role in the development of a new generation of memory devices and tunable oscillators. Optical excitations of magnetic systems by laser pulses have been a separate research field whose aim is to explore magnetization dynamics at short time scales and enable ultrafast spintronic devices. We report the experimental observation of the optical spin transfer torque, predicted theoretically several years ago building the bridge between these two fields of spintronics research. In a pump-and-probe optical experiment we measure coherent spin precession in a (Ga,Mn)As ferromagnetic semiconductor excited by circularly polarized laser pulses. During the pump pulse, the spin angular momentum of photo-carriers generated by the absorbed light is transferred to the collective magnetization of the ferromagnet. We interpret the observed optical spin transfer torque and the magnetization precession it triggers on a quantitative microscopic level. Bringing the spin transfer physics into optics introduces a fundamentally distinct mechanism from the previously reported thermal and non-thermal laser excitations of magnets. Bringing optics into the field of spin transfer torques decreases by several orders of magnitude the timescales at which these phenomena are explored and utilized.Comment: 11 pages, 4 figure

    Investigation of magneto-structural phase transition in FeRh by reflectivity and transmittance measurements in visible and near-infrared spectral region

    Get PDF
    Magneto-structural phase transition in FeRh epitaxial layers was studied optically. It is shown that the transition between the low-temperature antiferromagnetic phase and the high-temperature ferromagnetic phase is accompanied by a rather large change of the optical response in the visible and near-infrared spectral ranges. This change is consistent with ab initio calculations of reflectivity and transmittance. Phase transition temperatures in a series of FeRh films with thicknesses ranging from 6 to 100 nm is measured thereby demonstrating the utility of the method to quickly characterise samples. Spatially resolved imaging of their magnetic properties with a micrometer resolution shows that the phase transition occurs at different temperatures in different parts of the sample

    Experimental observation of the optical spin-orbit torque

    Full text link
    Spin polarized carriers electrically injected into a magnet from an external polarizer can exert a spin transfer torque (STT) on the magnetization. The phe- nomenon belongs to the area of spintronics research focusing on manipulating magnetic moments by electric fields and is the basis of the emerging technologies for scalable magnetoresistive random access memories. In our previous work we have reported experimental observation of the optical counterpart of STT in which a circularly polarized pump laser pulse acts as the external polarizer, allowing to study and utilize the phenomenon on several orders of magnitude shorter timescales than in the electric current induced STT. Recently it has been theoretically proposed and experimentally demonstrated that in the absence of an external polarizer, carriers in a magnet under applied electric field can develop a non-equilibrium spin polarization due to the relativistic spin-orbit coupling, resulting in a current induced spin-orbit torque (SOT) acting on the magnetization. In this paper we report the observation of the optical counterpart of SOT. At picosecond time-scales, we detect excitations of magnetization of a ferromagnetic semiconductor (Ga,Mn)As which are independent of the polarization of the pump laser pulses and are induced by non-equilibrium spin-orbit coupled photo-holes.Comment: 4 figure, supplementary information. arXiv admin note: text overlap with arXiv:1101.104

    A new and sensitive reaction rate method for spectrophotometric determination of trace amounts of thiourea in different water samples based on an induction period

    Get PDF
    BACKGROUNDAgrilus bigutattus (Fabricius) is a forest pest of increasing importance in the United Kingdom. The larvae damage weakened native oaks and are thought to contribute to premature tree death. Suspected links with acute oak decline (AOD) are not yet confirmed, but AOD-predisposed trees appear to become more susceptible to A. biguttatus attack. Thus, management may be necessary for control of this insect. To explore the possibility of monitoring beetle populations by baited traps, the host tree volatiles regulating A. biguttatus-oak interactions were studied. RESULTSBiologically active volatile organic compounds in dynamic headspace extracts of oak foliage and bark were identified initially by coupled gas chromatography-electroantennography (GC-EAG) and GC-mass spectrometry (GC-MS), and the structures were confirmed by GC coinjection with authentic compounds. Of two synthetic blends of these compounds comprising the active leaf volatiles, the simpler one containing three components evoked strongly positive behavioural responses in four-arm olfactometer tests with virgin females and males, although fresh leaf material was more efficient than the blend. The other blend, comprising a five-component mixture made up of bark volatiles, proved to be as behaviourally active for gravid females as bark tissue. CONCLUSIONSThese initial results on A. biguttatus chemical ecology reveal aspects of the role of attractive tree volatiles in the host-finding of beetles and underpin the development of semiochemically based surveillance strategies for this forest insect. (c) 2015 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry

    Impact of AFM-induced nano-pits in a-Si:H films on silicon crystal growth

    Get PDF
    Conductive tips in atomic force microscopy (AFM) can be used to localize field-enhanced metal-induced solid-phase crystallization (FE-MISPC) of amorphous silicon (a-Si:H) at room temperature down to nanoscale dimensions. In this article, the authors show that such local modifications can be used to selectively induce further localized growth of silicon nanocrystals. First, a-Si:H films by plasma-enhanced chemical vapor deposition on nickel/glass substrates are prepared. After the FE-MISPC process, yielding both conductive and non-conductive nano-pits in the films, the second silicon layer at the boundary condition of amorphous and microcrystalline growth is deposited. Comparing AFM morphology and current-sensing AFM data on the first and second layers, it is observed that the second deposition changes the morphology and increases the local conductivity of FE-MISPC-induced pits by up to an order of magnitude irrespective of their prior conductivity. This is attributed to the silicon nanocrystals (<100 nm) that tend to nucleate and grow inside the pits. This is also supported by micro-Raman spectroscopy

    Direct bandgap optical transitions in Si nanocrystals

    Full text link
    The effect of quantum confinement on the direct bandgap of spherical Si nanocrystals has been modelled theoretically. We conclude that the energy of the direct bandgap at the Γ\Gamma-point decreases with size reduction: quantum confinement enhances radiative recombination across the direct bandgap and introduces its "red" shift for smaller grains. We postulate to identify the frequently reported efficient blue emission (F-band) from Si nanocrystals with this zero-phonon recombination. In a dedicated experiment, we confirm the "red" shift of the F-band, supporting the proposed identification
    corecore