142 research outputs found

    Controlling Excited-State Reactivity of Iron(III) photosensitizers

    No full text
    Due to its high abundance, low cost and low toxicity, photosensitizers based on iron have long been considered as the holy grail for photochemical applications. Unfortunately, with a few exceptions,[1-3] these photosensitizers suffer from extremely short, sub-nanosecond, excited-state lifetimes that limit diffusional reactivity. We have determined key parameters that have allowed to circumvent these limitations and achieve efficient excited-state electron transfer with large cage-escape yields using green light irradiation.[4,5] Dehalogenation reactions operated with large yields and a clear view of the mechanistic pathway with the associated rate constants was obtained by a combination of time-resolved spectroscopic methods, such as femtosecond and nanosecond transient absorption or infrared spectroscopy (TRIR)

    Layer-by-Layer Assembly of Molecular Photoelectrodes on Conductive Metal Oxide for Water Splitting

    No full text
    Layer-by-Layer Assembly of Molecular Photoelectrodes on Conductive Metal Oxide for Water Splittin

    Photocatalyzed Dehalogenation Using Iron(III) Photosensitizers

    No full text
    Due to its high abundance, low cost and low toxicity, photosensitizers based on iron have long been considered as the holy grail for photochemical applications. Unfortunately, with a few exceptions, these photosensitizers suffer from extremely short, sub-nanosecond, excited-state lifetimes that limit diffusional reactivity. We have determined key parameters that have allowed to circumvent these limitations and achieve efficient excited-state electron transfer with large cage-escape yields using green light irradiation. Dehalogenation reactions operated with large yields and a clear view of the mechanistic pathway with the associated rate constants was obtained by a combination of time-resolved spectroscopic methods, such as femtosecond and nanosecond transient absorption or infrared spectroscopy (TRIR)

    Homogeneous Photocatalytic Systems – Photocatalytic Hydrogen Production

    No full text
    Homogeneous Photocatalytic Systems – Photocatalytic Hydrogen Productio

    Four-Membered Rings With Two Heteroatoms Including Silicon to Lead

    No full text
    The field of four-membered rings that contain two heteroatoms of group 14 including silicon to lead has experienced a drastic evolution in the past decade. This was made possible, in particular through the stabilization of heavier alkyne analogs, Ar–Etriple bondE–Ar (E = Ge, Sn or Pb) that served as synthetic precursors for the corresponding four-membered rings. Synthetic progresses, mechanisms, structural properties and theoretical considerations are presented in this article that covers the breakthroughs published between 2007 and 2019, while also including some relevant prior literature

    Controlling Excited-State Reactivity Towards More Efficient Energy Conversion

    No full text
    Solar energy represents a promising renewable energy source. In natural and artificial photosynthesis, light absorption and catalysis are separate processes linked together by exergonic electron transfer. There is a plethora of organic transformations that can be sensitized to visible light, but the corresponding reaction mechanisms are not always straightforward. Here, we will present recent advances in the field of mechanistic photoredox catalysis by means of steady-state and time-resolved spectroscopies. A special emphasis will be placed on cage-escape yields, i.e. the efficiency with which the radicals formed after excited-state electron transfer separate and escape the solvent cage. To do that, we have used a series of rare earth and earth abundant photosensitizers that were engaged in either oxidative or reductive excited-state electron transfer processes. Cage-escape could be modulated and is some case were shown to increase when the driving force for photo-induced electron transfer increased

    Visible-Light Mediated Reactivity in Solution and at the Metal Oxide Interface for Solar Fuels Production and Catalysis

    No full text
    Visible-Light Mediated Reactivity in Solution and at the Metal Oxide Interface for Solar Fuels Production and Catalysi

    Synthèse et étude de nouveaux complexes de ruthéniumII à base de ligands polyazaaromatiques étendus en vue d'applications dans le domaine de l'opte-électronique

    No full text
    Les complexes de métaux de transition, et plus particulièrement de ruthéniumII, ont connu un essor formidable depuis le milieu des années 1950 avec la découverte du complexe [Ru(bpy)3]2+. Depuis lors, de nombreuses recherches et découvertes ont permis de mettre au point un schéma photophysique prototypique pour les complexes de ruthéniumII comportant des ligands polypyridiniques. En variant la nature des ligands complexés à ce centre métallique, il a été possible de faire varier les propriétés photophysiques, photochimiques et électrochimiques des complexes résultants. Toutes ces modifications ont permis de mettre au point des complexes de ruthéniumII qui possèdent des applications dans des domaines variés. Ils sont par exemple utilisés dans le domaine de la photo-conversion d’énergie solaire ou dans le domaine de la photo-catalyse, permettant notamment de scinder l’eau en oxygène, ou de produire du dihydrogène au départ de protons. Ces complexes de ruthéniumII sont également utilisés dans le domaine biologique où ils peuvent interagir avec l’ADN via de nombreux processus. Les recherches au laboratoire de chimie organique et photochimie de l’Université libre de Bruxelles ont été concentrées sur le développement de ligands polyazaaromatiques qui possèdent un caractère π-accepteur prononcé. L’utilisation de tels ligands permet d’accéder à des complexes de ruthéniumII dont le caractère photo-oxydant est davantage prononcé que celui de leurs analogues de type [Ru(bpy)3]2+. Ce caractère photo-oxydant permet, dans le cadre d’applications biologique, d’induire la formation d’un photo-adduit résultant d’un transfert d’électron entre la guanine, base la plus réductrice de l’ADN, et le complexe de ruthéniumII. Les ligands π-accepteurs permettent également de diriger et de localiser le transfert d’électron à l’état excité. Lorsque le complexe absorbe un rayonnement lumineux de bonne énergie, un électron peut être transféré du centre de ruthéniumII vers un des ligands ancillaires. Ce transfert d’électron aura lieu vers le ligand qui est le plus avide en électrons. Ce phénomène trouve des applications directes en photo-conversion d’énergie solaire. En effet, afin de convertir de l’énergie solaire, il est important d’absorber le rayonnement lumineux, mais également de pouvoir transférer cette énergie en un lieu donné. L’utilisation de ligands avides en électrons permet donc de diriger cette énergie en un lieu précis. Dans le cadre de cette thèse de doctorat, nous nous sommes focalisés sur la synthèse de nouveaux ligands polyazaaromatiques qui devraient conférer des propriétés inédites aux complexes résultants. La première partie de cette thèse de doctorat a donc consisté à synthétiser des ligands polyazaaromatiques possédant un plan aromatique étendu. Nous avons mis au point une voie de synthèse pour obtenir des ligands tels que la 1,4,5,8-tétraazaphénanthrène-9,10-dione, précurseur du ligand 1,4,5,8-tétraazaphénanthrèno[9,10-b]1,4,5,8,9,12-hexaazatriphénylène (TAPHAT). Au cours de la synthèse de la 1,4,5,8-tétraazaphénanthrène-9,10-dione, nous avons également pu mettre au point une nouvelle méthode d’oxydation de noyaux de type quinoxaline à l’aide de dérivé d’iode hypervalent. Une fois la synthèse du ligand TAPHAT et des différents précurseurs effectuée, nous avons pu procéder à la synthèse des complexes de ruthéniumII. Le ligand TAPHAT, étant fortement insoluble et possédant quatre sites de chélation, nous avons décidé de procéder à la synthèse de complexes précurseurs pour préparer des complexes porteurs de ce ligand. Nous avons dès lors tenté d’obtenir les complexes précurseurs [Ru(TAP)2(diNH2TAP)]2+ et [Ru(TAP)2(tapdione)]2+. La synthèse de ces précurseurs a présenté de nombreux problèmes de chélation, donnant lieu cependant à des complexes très intéressants. Face à ces problèmes, nous nous sommes donc uniquement focalisés sur la synthèse du [Ru(TAP)2(diNH2TAP)]2+. Ce complexe précurseur a ensuite permis d’accéder à des complexes tels que le [Ru(TAP)2(HATPHE)]2+. Les complexes à base du ligand 9,10-diamino-1,4,5,8-tétraazaphénanthrène, à savoir le [Ru(TAP)2(diNH2TAP)]2+ et le [Ru(phen)2(diNH2TAP)]2+ ont ensuite été utilisés pour accéder aux complexes mono- et binucléaires symétriques du TAPHAT. Nous avons ensuite étudié les complexes à base du ligand PHEHAT ainsi que ceux à base du ligand TAPHAT et comparé leurs propriétés photophysiques, photochimiques et électrochimiques. En plus de ces complexes à base de ligands PHEHAT et TAPHAT, nous avons également eu l’occasion de synthétiser des ligands analogues au ligand DPPZ. Nous avons synthétisé deux ligands plus étendus que le DPPZ, à savoir le DPQQX, dont la synthèse avait déjà été rapportée dans la littérature, et le PDPPZ. Bien que les complexes à base du ligand PDPPZ n’aient pas pu être purifiés au cours de cette thèse, nous avons tout de même pu obtenir les complexes [Ru(TAP)2(DPQQX)]2+ et [Ru(phen)2(DPQQX)]2+. Les études photophysiques, photochimique et électrochimiques ont permis de mettre en évidence de nombreuses propriétés intéressantes. De plus, des études poussées en résonance magnétique nucléaire 1H ainsi qu’en dichroïsme circulaire ont permis de montrer un processus d’auto-assemblage en solution. Finalement, en plus de la synthèse de ligands polyazaaromatiques et de leurs complexes de ruthéniumII, nous avons également exploité la technique d’absorption transitoire dans le cadre d’une collaboration avec le laboratoire de résonance magnétique nucléaire. Cet axe de recherche s’est articulé autour de l’utilisation de deux complexes de ruthéniumII à savoir le [Ru(TAP)3]2+ et le [Ru(TAP)2(HAT)]2+. Ces complexes sont capables, sous illumination, de réaliser un transfert d’électron avec un réducteur. Ces processus de transfert d’électron photo-induit entre des réducteurs tels que la GMP, la N-acétyl-tyrosine, l’hydroquinone et les deux complexes de ruthéniumII ont été étudiés par les membres du laboratoire de résonance magnétique nucléaire à l’aide d’une technique dite Photo-Chemically Induced Dynamic Nuclear Polarization (Photo-CIDNP). Notre contribution a été d’investiguer les paramètres de quenching entre ces complexes et les différents réducteurs à l’aide de techniques classiques telles que la détermination de constantes de quenching via des analyses de type Stern-Volmer ainsi qu’à l’aide de techniques plus pointues telles que la photolyse éclair laser. Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Photo-CIDNP reveals two different photo-induced electron/proton transfer processes for protonatable ruthenium(II) polyazaaromatic complexes

    No full text
    Photo-CIDNP reveals two different photo-induced electron/proton transfer processes for protonatable ruthenium(II) polyazaaromatic complexe

    Synthesis of polyazaaromatic ligands with extended aromaticity for the development of novel transition metal complexes

    No full text
    Synthesis of polyazaaromatic ligands with extended aromaticity for the development of novel transition metal complexe
    • …
    corecore