49 research outputs found

    Mixed venous O-2 saturation and fluid responsiveness after cardiac or major vascular surgery

    Get PDF

    Hospital-acquired invasive pulmonary aspergillosis in patients with hepatic failure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invasive pulmonary aspergillosis (IPA) is a rapid, progressive, fatal disease that occurs mostly in immunocompromised patients. Patients with severe liver disease are at a heightened risk for infections. Little is known about the clinical presentation including predisposing factors and treatment of IPA in patients with hepatic failure.</p> <p>Methods</p> <p>Medical records of patients with hepatic failure between November 2005 and February 2007 were reviewed for lung infection. Nine medical records of definitive diagnosis of IPA and three of probable IPA were identified.</p> <p>Results</p> <p>The main predisposing factors were found to be prolonged antibiotic therapy and steroid exposure. Clinical signs and radiological findings were non-specific and atypical. Timely use of caspofungin was found to reduce the mortality due to the disease.</p> <p>Conclusion</p> <p>A high index of suspicion is required for early IPA diagnosis in patients with hepatic failure.</p

    Dynamic and volumetric variables reliably predict fluid responsiveness in a porcine model with pleural effusion

    Get PDF
    Background: The ability of stroke volume variation (SVV), pulse pressure variation (PPV) and global end-diastolic volume (GEDV) for prediction of fluid responsiveness in presence of pleural effusion is unknown. The aim of the present study was to challenge the ability of SVV, PPV and GEDV to predict fluid responsiveness in a porcine model with pleural effusions. Methods: Pigs were studied at baseline and after fluid loading with 8 ml kg−1 6% hydroxyethyl starch. After withdrawal of 8 ml kg−1 blood and induction of pleural effusion up to 50 ml kg−1 on either side, measurements at baseline and after fluid loading were repeated. Cardiac output, stroke volume, central venous pressure (CVP) and pulmonary occlusion pressure (PAOP) were obtained by pulmonary thermodilution, whereas GEDV was determined by transpulmonary thermodilution. SVV and PPV were monitored continuously by pulse contour analysis. Results: Pleural effusion was associated with significant changes in lung compliance, peak airway pressure and stroke volume in both responders and non-responders. At baseline, SVV, PPV and GEDV reliably predicted fluid responsiveness (area under the curve 0.85 (p<0.001), 0.88 (p<0.001), 0.77 (p = 0.007). After induction of pleural effusion the ability of SVV, PPV and GEDV to predict fluid responsiveness was well preserved and also PAOP was predictive. Threshold values for SVV and PPV increased in presence of pleural effusion. Conclusions: In this porcine model, bilateral pleural effusion did not affect the ability of SVV, PPV and GEDV to predict fluid responsiveness

    Perioperative fluid and volume management: physiological basis, tools and strategies

    Get PDF
    Fluid and volume therapy is an important cornerstone of treating critically ill patients in the intensive care unit and in the operating room. New findings concerning the vascular barrier, its physiological functions, and its role regarding vascular leakage have lead to a new view of fluid and volume administration. Avoiding hypervolemia, as well as hypovolemia, plays a pivotal role when treating patients both perioperatively and in the intensive care unit. The various studies comparing restrictive vs. liberal fluid and volume management are not directly comparable, do not differ (in most instances) between colloid and crystalloid administration, and mostly do not refer to the vascular barrier's physiologic basis. In addition, very few studies have analyzed the use of advanced hemodynamic monitoring for volume management
    corecore