151 research outputs found

    Orthologous genes identified by transcriptome sequencing in the spider genus Stegodyphus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evolution of sociality in spiders involves a transition from an outcrossing to a highly inbreeding mating system, a shift to a female biased sex ratio, and an increase in the reproductive skew among individuals. Taken together, these features are expected to result in a strong reduction in the effective population size. Such a decline in effective population size is expected to affect population genetic and molecular evolutionary processes, resulting in reduced genetic diversity and relaxed selective constraint across the genome. In the genus <it>Stegodyphus</it>, permanent sociality and regular inbreeding has evolved independently three times from periodic-social (outcrossing) ancestors. This genus is therefore an ideal model for comparative studies of the molecular evolutionary and population genetic consequences of the transition to a regularly inbreeding mating system. However, no genetic resources are available for this genus.</p> <p>Results</p> <p>We present the analysis of high throughput transcriptome sequencing of three <it>Stegodyphus </it>species. Two of these are periodic-social (<it>Stegodyphus lineatus </it>and <it>S.tentoriicola</it>) and one is permanently social (<it>S. mimosarum</it>). From non-normalized cDNA libraries, we obtained on average 7,000 putative uni-genes for each species. Three-way orthology, as predicted from reciprocal BLAST, identified 1,792 genes that could be used for cross-species comparison. Open reading frames (ORFs) could be deduced from 1,345 of the three-way alignments. Preliminary molecular analyses suggest a five- to ten-fold reduction in heterozygosity in the social <it>S. mimosarum </it>compared with the periodic-social species. Furthermore, an increased ratio of non-synonymous to synonymous polymorphisms in the social species indicated relaxed efficiency of selection. However, there was no sign of relaxed selection on the phylogenetic branch leading to <it>S. mimosarum</it>.</p> <p>Conclusions</p> <p>The 1,792 three-way ortholog genes identified in this study provide a unique resource for comparative studies of the eco-genomics, population genetics and molecular evolution of repeated evolution of inbreeding sociality within the <it>Stegodyphus </it>genu<it>s</it>. Preliminary analyses support theoretical expectations of depleted heterozygosity and relaxed selection in the social inbreeding species. Relaxed selection could not be detected in the <it>S. mimosarum </it>lineage, suggesting that there has been a recent transition to sociality in this species.</p

    QuantumATK: An integrated platform of electronic and atomic-scale modelling tools

    Full text link
    QuantumATK is an integrated set of atomic-scale modelling tools developed since 2003 by professional software engineers in collaboration with academic researchers. While different aspects and individual modules of the platform have been previously presented, the purpose of this paper is to give a general overview of the platform. The QuantumATK simulation engines enable electronic-structure calculations using density functional theory or tight-binding model Hamiltonians, and also offers bonded or reactive empirical force fields in many different parametrizations. Density functional theory is implemented using either a plane-wave basis or expansion of electronic states in a linear combination of atomic orbitals. The platform includes a long list of advanced modules, including Green's-function methods for electron transport simulations and surface calculations, first-principles electron-phonon and electron-photon couplings, simulation of atomic-scale heat transport, ion dynamics, spintronics, optical properties of materials, static polarization, and more. Seamless integration of the different simulation engines into a common platform allows for easy combination of different simulation methods into complex workflows. Besides giving a general overview and presenting a number of implementation details not previously published, we also present four different application examples. These are calculations of the phonon-limited mobility of Cu, Ag and Au, electron transport in a gated 2D device, multi-model simulation of lithium ion drift through a battery cathode in an external electric field, and electronic-structure calculations of the composition-dependent band gap of SiGe alloys.Comment: Submitted to Journal of Physics: Condensed Matte
    corecore