458 research outputs found

    Kovacs-like memory effect in driven granular gases

    Get PDF
    While memory effects have been reported for dense enough disordered systems such as glasses, we show here by a combination of analytical and simulation techniques that they are also intrinsic to the dynamics of dilute granular gases. By means of a certain driving protocol, we prepare the gas in a state where the granular temperature TT coincides with its long time limit. However, TT does not subsequently remain constant, but exhibits a non-monotonic evolution before reaching its non-equilibrium steady value. The corresponding so-called Kovacs hump displays a normal behavior for weak dissipation (as observed in molecular systems), but is reversed under strong dissipation, where it thus becomes anomalous.Comment: 5 pages, to appear in Physical Review Letter

    Lack of energy equipartition in homogeneous heated binary granular mixtures

    Full text link
    We consider the problem of determining the granular temperatures of the components of a homogeneous binary heated mixture of inelastic hard spheres, in the framework of Enskog kinetic theory. Equations are derived for the temperatures of each species and their ratio, which is different from unity, as may be expected since the system is out of equilibrium. We focus on the particular heating mechanism where the inelastic energy loss is compensated by an injection through a random external force (``stochastic thermostat''). The influence of various parameters and their possible experimental relevance is discussed.Comment: 8 pages, 9 eps figures, to be published in Granular Matte

    Rheological properties for inelastic Maxwell mixtures under shear flow

    Full text link
    The Boltzmann equation for inelastic Maxwell models is considered to determine the rheological properties in a granular binary mixture in the simple shear flow state. The transport coefficients (shear viscosity and viscometric functions) are {\em exactly} evaluated in terms of the coefficients of restitution, the (reduced) shear rate and the parameters of the mixture (particle masses, diameters and concentration). The results show that in general, for a given value of the coefficients of restitution, the above transport properties decrease with increasing shear rate

    Random inelasticity and velocity fluctuations in a driven granular gas

    Full text link
    We analyze the deviations from Maxwell-Boltzmann statistics found in recent experiments studying velocity distributions in two-dimensional granular gases driven into a non-equilibrium stationary state by a strong vertical vibration. We show that in its simplest version, the ``stochastic thermostat'' model of heated inelastic hard spheres, contrary to what has been hitherto stated, is incompatible with the experimental data, although predicting a reminiscent high velocity stretched exponential behavior with an exponent 3/2. The experimental observations lead to refine a recently proposed random restitution coefficient model. Very good agreement is then found with experimental velocity distributions within this framework, which appears self-consistent and further provides relevant probes to investigate the universality of the velocity statistics.Comment: 5 pages, 5 eps figure

    Tracer diffusion coefficients in a sheared inelastic Maxwell gas

    Full text link
    We study the transport properties of an impurity in a sheared granular gas, in the framework of the Boltzmann equation for inelastic Maxwell models. We investigate here the impact of a nonequilibrium phase transition found in such systems, where the tracer species carries a finite fraction of the total kinetic energy (ordered phase). To this end, the diffusion coefficients are first obtained for a granular binary mixture in spatially inhomogeneous states close to the simple shear flow. In this situation, the set of coupled Boltzmann equations are solved by means of a Chapman-Enskog-like expansion around the (local) shear flow distributions for each species, thereby retaining all the hydrodynamic orders in the shear rate aa. Due to the anisotropy induced by the shear flow, three tensorial quantities DijD_{ij}, Dp,ijD_{p,ij}, and DT,ijD_{T,ij} are required to describe the mass transport process instead of the conventional scalar coefficients. These tensors are given in terms of the solutions of a set of coupled algebraic equations, which can be \emph{exactly} solved as functions of the shear rate aa, the coefficients of restitution αsr\alpha_{sr} and the parameters of the mixture (masses and composition). Once the forms of DijD_{ij}, Dp,ijD_{p,ij}, and DT,ijD_{T,ij} are obtained for arbitrary mole fraction x1=n1/(n1+n2)x_1=n_1/(n_1+n_2) (where nrn_r is the number density of species rr), the tracer limit (x10x_1\to 0) is carefully considered for the above three diffusion tensors. Explicit forms for these coefficients are derived showing that their shear rate dependence is significantly affected by the order-disorder transition.Comment: 19 pages, 6 figure

    Free cooling and inelastic collapse of granular gases in high dimensions

    Full text link
    The connection between granular gases and sticky gases has recently been considered, leading to the conjecture that inelastic collapse is avoided for space dimensions higher than 4. We report Molecular Dynamics simulations of hard inelastic spheres in dimensions 4, 5 and 6. The evolution of the granular medium is monitored throughout the cooling process. The behaviour is found to be very similar to that of a two-dimensional system, with a shearing-like instability of the velocity field and inelastic collapse when collisions are inelastic enough, showing that the connection with sticky gases needs to be revised.Comment: 6 pages, 6 figures (7 postscript files), submitted to EPJ
    corecore