9 research outputs found

    Torque behavior of one-phase permanent magnet AC motor

    Get PDF
    This paper presents a detailed comparative study of two starting and running methods for a single-phase permanent magnet synchronous motor, equipped with a squirrel-cage rotor. The analysis of the motor performance is realized for a pulse width modulated (PWM) inverter fed motor and for a capacitor-start, capacitor-run motor. The developed approach may be extended to any 1-phase ac motor—induction, synchronous reluctance or synchronous permanent magnet

    Asynchronous performance analysis of a single-phase capacitor-start, capacitor-run permanent magnet motor

    Get PDF
    This work presents a detailed analysis of the asynchronous torque components (average cage, magnet braking torque and pulsating) for a single-phase capacitor-start, capacitor-run permanent magnet motor. The computed envelope of pulsating torque superimposed over the average electromagnetic torque leads to an accurate prediction of starting torque. The developed approach is realized by means of a combination of symmetrical components and d-q axes theory and it can be extended for any m-phase AC motor - induction, synchronous reluctance or synchronous permanent magnet. The resultant average electromagnetic torque is determined by superimposing the asynchronous torques and magnet braking torque effects

    Line-start permanent-magnet motor single-phase steady-state performance analysis

    Get PDF
    This paper describes an efficient calculating procedure for the steady-state operation of a single-phase line-start capacitor-run permanent-magnet motor. This class of motor is beginning to be applied in hermetic refrigerator compressors as a high-efficiency alternative to either a plain induction motor or a full inverter-fed drive. The calculation relies on a combination of reference-frame transformations including symmetrical components to cope with imbalance, and dq axes to cope with saliency. Computed results are compared with test data. The agreement is generally good, especially in describing the general properties of the motor. However, it is shown that certain important effects are beyond the limit of simple circuit analysis and require a more complex numerical analysis method

    Line start permanent magnet motor: single-phase starting performance analysis

    Get PDF
    This paper presents a detailed quasi-steady-state approach to different torque components (average and pulsating) for a single-phase capacitor-run permanent-magnet (PM) motor. By employing average electromagnetic torque, and the expected envelope of the pulsating torque, an accurate prediction of starting torque components behavior is made. The quasi-steady-state analysis of the asynchronous performance of the single-phase capacitor-start capacitor-run PM motor is realized through a combination of symmetrical components and d-q axes theory. The developed approach is valid for any m-phase AC motor-induction, synchronous reluctance, or synchronous PM

    Torque behaviour of 1-phase permanent magnet AC motor

    No full text

    Comparative study of starting methods for a single phase permament magnet synchronous motor

    No full text
    corecore