23 research outputs found

    Determination of sevoflurane and isopropyl alcohol in exhaled breath by thermal desorption gas chromatography-mass spectrometry for exposure assessment of hospital staff

    Get PDF
    Volatile anaesthetics and disinfection chemicals pose ubiquitous inhalation and dermal exposure risks in hospital and clinic environments. This work demonstrates specific non-invasive breath biomonitoring methodology for assessing staff exposures to sevoflurane (SEV) anaesthetic, documenting its metabolite hexafluoroisopropanol (HFIP) and measuring exposures to isopropanol (IPA) dermal disinfection fluid. Methods are based on breath sample collection in Nalophan bags, followed by an aliquot transfer to adsorption tube, and subsequent analysis by thermal desorption gas chromatography-mass spectrometry (TD-GC-MS). Ambient levels of IPA were also monitored. These methods could be generalized to other common volatile chemicals found in medical environments. Calibration curves were linear (r2=0.999) in the investigated ranges: 0.01-1000ppbv for SEV, 0.02-1700ppbv for IPA, and 0.001-0.1ppbv for HFIP. The instrumental detection limit was 10pptv for IPA and 5pptv for SEV, both estimated by extracted ion-TIC chromatograms, whereas the HFIP minimum detectable concentration was 0.5pptv as estimated in SIM acquisition mode. The methods were applied to hospital staff working in operating rooms and clinics for blood draws. SEV and HFIP were present in all subjects at concentrations in the range of 0.7-18, and 0.002-0.024ppbv for SEV and HFIP respectively. Correlation between IPA ambient air and breath concentration confirmed the inhalation pathway of exposure (r=0.95, p<0.001) and breath-borne IPA was measured as high as 1500ppbv. The methodology is easy to implement and valuable for screening exposures to common hospital chemicals. Although the overall exposures documented were generally below levels of health concern in this limited study, outliers were observed that indicate potential for acute exposures

    Comparison of sampling bags for the analysis of volatile organic compounds in breath

    Get PDF
    Nalophan, Tedlar and Cali-5-Bond polymeric bags were compared to determine the most suitable type for breath sampling and storage when volatile organic compounds are to be determined. Analyses were performed by thermal desorption gas chromatography mass spectrometry. For each bag, the release of contaminants and the chemical stability of a gaseous standard mixture containing eighteen organic compounds, as well as the CO2 partial pressure were assessed. The selected compounds were representative of breath constituents and belonged to different chemical classes (i.e. hydrocarbons, ketones, aldehydes, aromatics, sulfurs and esters). In the case of Nalophan, the influence of the surface-to-volume ratio, related to the bag's filling degree, on the chemical stability was also evaluated. Nalophan bags were found to be the most suitable in terms of contaminants released during storage (only 2-methyl-1,3-dioxalane), good sample stability (up to 24 h for both dry and humid samples), and very limited costs (about 1 for a 20 liter bag). The (film) surface-to-(sample) volume ratio was found to be an important factor affecting the stability of selected compounds, and therefore we recommended to fill the bag completely

    Modeling andsimulationofspeedselectiononleftventricular assist devices

    Get PDF
    The control problem for LVADs is to set pump speed such that cardiac output and pressure perfusion are within acceptable physiological ranges. However, current technology of LVADs cannot provide for a closed-loop control scheme that can make adjustments based on the patient\u27s level of activity. In this context, the SensorART Speed Selection Module (SSM) integrates various hardware and software components in order to improve the quality of the patients\u27 treatment and the workflow of the specialists. It enables specialists to better understand the patient-device interactions, and improve their knowledge. The SensorART SSM includes two tools of the Specialist Decision Support System (SDSS); namely the Suction Detection Tool and the Speed Selection Tool. A VAD Heart Simulation Platform (VHSP) is also part of the system. The VHSP enables specialists to simulate the behavior of a patient?s circulatory system, using different LVAD types and functional parameters. The SDSS is a web-based application that offers specialists with a plethora of tools for monitoring, designing the best therapy plan, analyzing data, extracting new knowledge and making informative decisions. In this paper, two of these tools, the Suction Detection Tool and Speed Selection Tool are presented. The former allows the analysis of the simulations sessions from the VHSP and the identification of issues related to suction phenomenon with high accuracy 93%. The latter provides the specialists with a powerful support in their attempt to effectively plan the treatment strategy. It allows them to draw conclusions about the most appropriate pump speed settings. Preliminary assessments connecting the Suction Detection Tool to the VHSP are presented in this paper

    Systematic Lab Knowledge Integration for Management of Lipid Excess in High-Risk Patients : Rationale and Design of the SKIM LEAN Project

    Get PDF
    SKIM LEAN aims at exploiting Electronic Health Records (EHRs) to integrate knowledge derived from routine laboratory tests with background analysis of clinical databases, for the identification and early referral to specialist care, where appropriate, of patients with hypercholesterolemia, who may be inadequately controlled according to their cardiovascular (CV) risk level. SKIM LEAN addresses gaps in care that may occur through the lack of coordination between primary and specialist care, incomplete adherence to clinical guidelines, or poor patient's compliance to the physician's prescriptions because of comorbidities or drug side effects. Key project objectives include: (1) improved health professionals' competence and patient empowerment through a two-tiered educational website for general practitioners (GPs) and patients, and (2) implementation of a hospital-community shared care pathway to increase the proportion of patients at high/very-high CV risk (Familial Hypercholesterolemia, previous CV events) who achieve target LDL cholesterol (LDL-C) levels. Thanks to a close collaboration between clinical and information technology partners, SKIM LEAN will fully exploit the value of big data deriving from EHRs, and filter such knowledge using clinically-derived algorithms to risk-stratify patients. Alerts for GPs will be generated with interpreted test results. GPs will be able to refer patients with uncontrolled LDL-C within the shared pathway to the lipid or secondary prevention outpatient clinics of NIG hospital. Metrics to verify the project achievements include web-site visits, the number of alerts generated, numbers of patients referred by GPs, the proportion of secondary prevention patients who achieve LDL-C 50% decrease from baseline

    Physiology in Extreme Conditions: Adaptations and Unexpected Reactions

    Full text link
    Physiology in extreme conditions can reveal important reactions of the human body, which help our assessment of limits emerging under healthy conditions and critical signals of transition toward disease. While many mechanisms could simply be associated with adaptations, others refer to unexpected reactions in response to internal stimuli and/or external abrupt changes
    corecore