3 research outputs found

    Parallel adaptive sparse approximation methods for analysis of geoacoustic pulses

    No full text
    The article is devoted to a new approach in the analysis of geoacoustic pulses. The authors proposed a mathematical model based on a sparse representation of the signal. An adaptive matching pursuit method has been developed to identify model parameters. A parallel implementation of this algorithm is proposed on the CUDA platform. This allows real-time processing and modeling of signals

    Parallel adaptive sparse approximation methods for analysis of geoacoustic pulses

    No full text
    The article is devoted to a new approach in the analysis of geoacoustic pulses. The authors proposed a mathematical model based on a sparse representation of the signal. An adaptive matching pursuit method has been developed to identify model parameters. A parallel implementation of this algorithm is proposed on the CUDA platform. This allows real-time processing and modeling of signals

    Complex analysis of pre-seismic geoacoustic and electromagnetic emission signals

    No full text
    The article describes the results of complex analysis of pre-seismic signals of electromagnetic and geoacoustic radiation. We analyzed the frequency content of single sferics and geoacoustic impulses recorded before the Zhupanov earthquake that occurred on January 30, 2016. The signals were analyzed using sparse approximation method, in particular Adaptive Matched Pursuit. Background signals were studied together with pre-seismic ones. Distributions of frequencies, that are part of background and pre-seismic signals, were compared. Differences in the frequency content of pre-seismic sferics and geoacoustic impulses were found. The revealed features of pre-seismic signals in the future can be used in the design of systems for monitoring, forecasting and prevention of natural disasters. The research was supported by Russian Science Foundation (project No. 18-11-00087)
    corecore