5 research outputs found

    Gemini Imidazolinium Surfactants: A Versatile Class of Molecules

    Get PDF
    Gemini imidazolinium surfactants fascinated the researchers and many industries towards it due to their distinct molecular structure. It belongs to the cationic surfactant group. The variation in the physicochemical properties of the gemini surfactant can be achieved by changing the characteristics in the structure. There are several applications of imidazolinium such as antistatic agents, fabric softener that makes it a demanding surfactant in detergent industries as well as in the laundry industries due to the immense number of properties like dispersibility, viscosity, desirable storage stability, emulsification, critical micelle concentration and fabric conditioning etc. This book chapter discussed about the Gemini imidazolinium surfactants and its various properties, synthesis methods and applications in various fields

    Nanomembranes-Affiliated Water Remediation: Chronology, Properties, Classification, Challenges and Future Prospects

    No full text
    Water contamination has become a global crisis, affecting millions of people worldwide and causing diseases and illnesses, including cholera, typhoid, and hepatitis A. Conventional water remediation methods have several challenges, including their inability to remove emerging contaminants and their high cost and environmental impact. Nanomembranes offer a promising solution to these challenges. Nanomembranes are thin, selectively permeable membranes that can remove contaminants from water based on size, charge, and other properties. They offer several advantages over conventional methods, including their ability to remove evolving pollutants, low functioning price, and reduced ecological influence. However, there are numerous limitations linked with the applications of nanomembranes in water remediation, including fouling and scaling, cost-effectiveness, and potential environmental impact. Researchers are working to reduce the cost of nanomembranes through the development of more cost-effective manufacturing methods and the use of alternative materials such as graphene. Additionally, there are concerns about the release of nanomaterials into the environment during the manufacturing and disposal of the membranes, and further research is needed to understand their potential impact. Despite these challenges, nanomembranes offer a promising solution for the global water crisis and could have a significant impact on public health and the environment. The current article delivers an overview on the exploitation of various engineered nanoscale substances, encompassing the carbonaceous nanomaterials, metallic, metal oxide and metal–organic frameworks, polymeric nano-adsorbents and nanomembranes, for water remediation. The article emphasizes the mechanisms involved in adsorption and nanomembrane filtration. Additionally, the authors aim to deliver an all-inclusive review on the chronology, technical execution, challenges, restrictions, reusability, and future prospects of these nanomaterials

    Palmitic acid based environmentally benign corrosion inhibiting formulation useful during acid cleansing process in MSF desalination plants

    No full text
    Palmitic acid imidazole (PI) was synthesized in microwave reactor. The obtained product was explored to reveal the mild steel's corrosion inhibiting property in 1 mol L−1 H2SO4. It gave maximum inhibition efficiency of 90% at ambient condition. Addition of little amount of KI (6 × 10−3 mol L−1) into 1× 10−3 mol L−1 of PI further increased its efficiency up to 98%. High corrosion inhibiting property of PI was observed owing to its adsorption on mild steel surface. The synthesized inhibitor molecule adsorbs via physisorption and chemisorption phenomenon; and followed Langmuir adsorption isotherm. Synergistic effect of KI addition with inhibitors was investigated and the obtained synergism parameters revealed a co-operative mechanism. The surface topography analysis and water angle measurements exhibited surface protective and water repelling property of PI. Furthermore, DFT, FIs analysis, MD simulations and RDF analysis were performed for exploring intrinsic molecular property and insightful elucidation of corrosion inhibiting mechanism. It unveiled spontaneous and strong adsorption of both neutral and protonated PI on metals' surfaces in presence of iodide ions. The obtained outcomes suggested that the combination of KI and PI may be the preferable corrosion inhibitor during acid cleansing process in MSF desalination plants

    Sensitive Fingerprint Detection Using Biocompatible Mesoporous Silica Nanoparticle Coating on Non-Porous Surfaces

    No full text
    In recent years, the development and application of biocompatible nanomaterials in the detection of fingerprints have become a major focus for the forensic sector and crime investigators. This study aims to synthesize biocompatible silica nanoparticles (Si NPs) through cost-effective green methods and will be used to detect a latent fingerprint on a non-porous surface. As a type of environmentally friendly nanomaterial, Si NPs were prepared via an oil–water mixed micro-emulsion templating (MET) approach. Their characteristics and optical properties were measured using EDX-SEM, HR-TEM, FTIR, XRD, and UV–visible absorption. The biocompatibility of the synthesized Si NPs in terms of cell viability was observed, even at high concentrations (83.46% and 75.28% at 20 and 50 mg mL−1, respectively). The developed Si NPs were tested on different surfaces, including plastic, glass, silicon, steel, and soft plastic for the detection of crime scene fingerprints. In this research, it was found that the Si NPs were of the size of 100–150 nm. Results confirmed that synthesized mesoporous Si NPs can be used to detect latent fingerprints on multiple non-porous surfaces and were easy to detect under a UV lamp at 395 nm. These findings reinforce the suggestion that the developed Si NP coating has a high potential to increase sensitive and stable crime traces for forensic latent fingerprint detection, even in packaged food with different packaging surfaces

    Sensitive Fingerprint Detection Using Biocompatible Mesoporous Silica Nanoparticle Coating on Non-Porous Surfaces

    No full text
    In recent years, the development and application of biocompatible nanomaterials in the detection of fingerprints have become a major focus for the forensic sector and crime investigators. This study aims to synthesize biocompatible silica nanoparticles (Si NPs) through cost-effective green methods and will be used to detect a latent fingerprint on a non-porous surface. As a type of environmentally friendly nanomaterial, Si NPs were prepared via an oil–water mixed micro-emulsion templating (MET) approach. Their characteristics and optical properties were measured using EDX-SEM, HR-TEM, FTIR, XRD, and UV–visible absorption. The biocompatibility of the synthesized Si NPs in terms of cell viability was observed, even at high concentrations (83.46% and 75.28% at 20 and 50 mg mL−1, respectively). The developed Si NPs were tested on different surfaces, including plastic, glass, silicon, steel, and soft plastic for the detection of crime scene fingerprints. In this research, it was found that the Si NPs were of the size of 100–150 nm. Results confirmed that synthesized mesoporous Si NPs can be used to detect latent fingerprints on multiple non-porous surfaces and were easy to detect under a UV lamp at 395 nm. These findings reinforce the suggestion that the developed Si NP coating has a high potential to increase sensitive and stable crime traces for forensic latent fingerprint detection, even in packaged food with different packaging surfaces
    corecore