5 research outputs found

    Platelet Rich Plasma stimulates human hair growth in vitro

    Get PDF
    Several factors are involved in hair growth and cycling (Buffoli et al., 2013). Platelet concentrates have a new important role in regenerative medicine and thus in dermatology, oral, plastic and orthopaedic surgery and hair growth (Franco et al., 2012). In this study we evaluated in vitro the effects of Platelet-Rich Plasma (PRP), an autologous platelet preparation, on hair growth. In particular, we compared four different culture media (Philpott et al., 1990): 1-William’s E culture medium with supplemented factors; 2-William’s E culture medium with supplemented factors and Platelet Rich Plasma; 3-William’s E culture medium without supplemented factors; 4-William’s E culture medium without supplemented factors but with PRP. Hair shaft elongation was measured at 0, 24, 48, 72 and 96 hours: digitally fixed images of slices were analyzed using an image analyzer considering as measurable portion the shaft part between the bulb upper border and the top of the hair end. The values obtained were used to calculate the percentage of elongation for each time. Growth in hair cultured with William’s E medium with supplemented factors and PRP resulted higher with respect to the other media. Moreover, these results suggest that PRP stimulates human hair growth in vitro

    Clinical Translation of Microbiome Research in Alopecia Areata: A New Perspective?

    No full text
    The continuous research advances in the microbiome field is changing clinicians’ points of view about the involvement of the microbiome in human health and disease, including autoimmune diseases such as alopecia areata (AA). Both gut and cutaneous dysbiosis have been considered to play roles in alopecia areata. A new approach is currently possible owing also to the use of omic techniques for studying the role of the microbiome in the disease by the deep understanding of microorganisms involved in the dysbiosis as well as of the pathways involved. These findings suggest the possibility to adopt a topical approach using either cosmetics or medical devices, to modulate or control, for example, the growth of overexpressed species using specific bacteriocins or postbiotics or with pH control. This will favour at the same time the growth of beneficial bacteria which, in turn, can impact positively both the structure of the scalp ecosystem on the host’s response to internal and external offenders. This approach, together with a “systemic” one, via oral supplementation, diet, or faecal transplantation, makes a reliable translation of microbiome research in clinical practice and should be taken into consideration every time alopecia areata is considered by a clinician

    The Menopausal Transition: Is the Hair Follicle “Going through Menopause”?

    No full text
    This article explores the link between menopause and changes in the hair follicle (HF) lifecycle, focusing on hormonal and metabolic dynamics. During menopause, hormonal fluctuations and aging can impact the HF, leading to phenomena such as thinning, loss of volume, and changes in hair texture. These changes are primarily attributed to a decrease in estrogen levels. However, not all women experience significant hair changes during menopause, and the extent of transformations can vary considerably from person to person, influenced by genetic factors, stress, diet, and other elements. Furthermore, menopause mirrors the aging process, affecting metabolism and blood flow to the HFs, influencing the availability of vital nutrients. The article also discusses the key role of energy metabolism in the HF lifecycle and the effect of hormones, particularly estrogens, on metabolic efficiency. The concept of a possible “menopause” clinically independent of menopause is introduced, related to changes in HF metabolism, emphasizing the importance of individual factors such as estrogen receptor responses, genetics, and last but not least, the microbiota in determining these dynamics

    Clinical Translation of Microbiome Research in Alopecia Areata: A New Perspective?

    No full text
    The continuous research advances in the microbiome field is changing clinicians’ points of view about the involvement of the microbiome in human health and disease, including autoimmune diseases such as alopecia areata (AA). Both gut and cutaneous dysbiosis have been considered to play roles in alopecia areata. A new approach is currently possible owing also to the use of omic techniques for studying the role of the microbiome in the disease by the deep understanding of microorganisms involved in the dysbiosis as well as of the pathways involved. These findings suggest the possibility to adopt a topical approach using either cosmetics or medical devices, to modulate or control, for example, the growth of overexpressed species using specific bacteriocins or postbiotics or with pH control. This will favour at the same time the growth of beneficial bacteria which, in turn, can impact positively both the structure of the scalp ecosystem on the host’s response to internal and external offenders. This approach, together with a “systemic” one, via oral supplementation, diet, or faecal transplantation, makes a reliable translation of microbiome research in clinical practice and should be taken into consideration every time alopecia areata is considered by a clinician
    corecore