224 research outputs found

    Structural, Mechanical, Electronic and Thermodynamic Analysis of Calcium Aluminum Silicate Crystalline Phases in Stone Wool Insulation Materials: A first-principles study

    Get PDF
    Stone wool materials have gained considerable attention due to their effectiveness as thermal and acoustic insulation solutions. The comprehension of crystal structure properties is pivotal in determining the overall performance of these materials, as it enables us to optimize their composition for enhanced insulating capabilities. Crucial factors such as structural, mechanical, and thermodynamic characteristics of crystalline phases within stone wool are vital for evaluating its thermal and acoustic insulation properties. This study investigates the properties of calcium aluminum silicate crystal phases commonly present in stone wool, including anorthite, svyatoslavite, scolecite, and dehydrated scolecite using density functional theory (DFT) calculations. In comparison to previous works, this study provides a more comprehensive analysis using advanced DFT calculations. Our analysis reveals the complex interplay between the crystal structures and mechanical behavior of these phases. The calculated bulk modulus of the phases varies significantly, ranging from 38 to 83 GPa. We have compared the calculated elastic properties with available experimental data and found excellent agreement, confirming the accuracy of the computational approach. Moreover, we find that polymorphism has a significant impact on the mechanical strength, with anorthite exhibiting higher strength compared to svyatoslavite. Furthermore, dehydration is found to cause a reduction in unit volume and mechanical strength. The thermodynamic properties of dehydrated scolecite, including entropy and heat capacity, are significantly lower due to the absence of water molecules. These findings highlight the importance of understanding the structural and mechanical characteristics of calcium aluminum silicate phases in stone wool materials. Additionally, our findings have broader implications in various industries requiring effective insulation solutions such as to develop new materials or to enhance the energy efficiency of existing insulating products. © 2023 The Author(s)publishedVersio

    Dark-Photon Search using Data from CRESST-II Phase 2

    Full text link
    Identifying the nature and origin of dark matter is one of the major challenges for modern astro and particle physics. Direct dark-matter searches aim at an observation of dark-matter particles interacting within detectors. The focus of several such searches is on interactions with nuclei as provided e.g. by Weakly Interacting Massive Particles. However, there is a variety of dark-matter candidates favoring interactions with electrons rather than with nuclei. One example are dark photons, i.e., long-lived vector particles with a kinetic mixing to standard-model photons. In this work we present constraints on this kinetic mixing based on data from CRESST-II Phase 2 corresponding to an exposure before cuts of 52\,kg-days. These constraints improve the existing ones for dark-photon masses between 0.3 and 0.7\,keV/c2^2.Comment: submitted EPJ

    Results on light dark matter particles with a low-threshold CRESST-II detector

    Get PDF
    The CRESST-II experiment uses cryogenic detectors to search for nuclear recoil events induced by the elastic scattering of dark matter particles in CaWO4_4 crystals. Given the low energy threshold of our detectors in combination with light target nuclei, low mass dark matter particles can be probed with high sensitivity. In this letter we present the results from data of a single detector module corresponding to 52 kg live days. A blind analysis is carried out. With an energy threshold for nuclear recoils of 307 eV we substantially enhance the sensitivity for light dark matter. Thereby, we extend the reach of direct dark matter experiments to the sub-region and demonstrate that the energy threshold is the key parameter in the search for low mass dark matter particles.Comment: 8 pages, 8 figure

    Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground

    Full text link
    Models for light dark matter particles with masses below 1 GeV/c2^2 are a natural and well-motivated alternative to so-far unobserved weakly interacting massive particles. Gram-scale cryogenic calorimeters provide the required detector performance to detect these particles and extend the direct dark matter search program of CRESST. A prototype 0.5 g sapphire detector developed for the ν\nu-cleus experiment has achieved an energy threshold of Eth=(19.7±0.9)E_{th}=(19.7\pm 0.9) eV, which is one order of magnitude lower than previous results and independent of the type of particle interaction. The result presented here is obtained in a setup above ground without significant shielding against ambient and cosmogenic radiation. Although operated in a high-background environment, the detector probes a new range of light-mass dark matter particles previously not accessible by direct searches. We report the first limit on the spin-independent dark matter particle-nucleon cross section for masses between 140 MeV/c2^2 and 500 MeV/c2^2.Comment: 6 pages, 6 figures, v3: ancillary files added, v4: high energy spectrum (0.6-12keV) added to ancillary file

    Role of Environmental Factors in Shaping Spatial Distribution of Salmonella enterica Serovar Typhi, Fij

    Get PDF
    Fiji recently experienced a sharp increase in reported typhoid fever cases. To investigate geographic distribution and environmental risk factors associated with Salmonella enterica serovar Typhi infection, we conducted a cross-sectional cluster survey with associated serologic testing for Vi capsular antigen–specific antibodies (a marker for exposure to Salmonella Typhi in Fiji in 2013. Hotspots with high seroprevalence of Vi-specific antibodies were identified in northeastern mainland Fiji. Risk for Vi seropositivity increased with increased annual rainfall (odds ratio [OR] 1.26/quintile increase, 95% CI 1.12–1.42), and decreased with increased distance from major rivers and creeks (OR 0.89/km increase, 95% CI 0.80–0.99) and distance to modeled flood-risk areas (OR 0.80/quintile increase, 95% CI 0.69–0.92) after being adjusted for age, typhoid fever vaccination, and home toilet type. Risk for exposure to Salmonella Typhi and its spatial distribution in Fiji are driven by environmental factors. Our findings can directly affect typhoid fever control efforts in Fiji.This study was supported by the World Health Organization, Division of Pacific Technical Support (grant 2013/334890-0); the Chadwick Trust; the Bill and Melinda Gates Foundation (grant OPP1033751); and the Wellcome Trust of Great Britain (grant 100087/Z/12/Z
    • …
    corecore