128 research outputs found
Cooperative Cargo Transport by Several Molecular Motors
The transport of cargo particles which are pulled by several molecular motors
in a cooperative manner is studied theoretically. The transport properties
depend primarily on the maximal number, , of motor molecules that may pull
simultaneously on the cargo particle. Since each motor must unbind from the
filament after a finite number of steps but can also rebind to it again, the
actual number of pulling motors is not constant but varies with time between
zero and . An increase in the maximal number leads to a strong increase
of the average walking distance (or run length) of the cargo particle. If the
cargo is pulled by up to kinesin motors, e.g., the walking distance is
estimated to be micrometers which implies that seven or eight
kinesin molecules are sufficient to attain an average walking distance in the
centimeter range. If the cargo particle is pulled against an external load
force, this force is shared between the motors which provides a nontrivial
motor-motor coupling and a generic mechanism for nonlinear force-velocity
relationships. With increasing load force, the probability distribution of the
instantenous velocity is shifted towards smaller values, becomes broader, and
develops several peaks. Our theory is consistent with available experimental
data and makes quantitative predictions that are accessible to systematic in
vitro experiments.Comment: 24 pages, latex, 6 figures, includes Supporting Tex
Stochastic modeling of cargo transport by teams of molecular motors
Many different types of cellular cargos are transported bidirectionally along
microtubules by teams of molecular motors. The motion of this cargo-motors
system has been experimentally characterized in vivo as processive with rather
persistent directionality. Different theoretical approaches have been suggested
in order to explore the origin of this kind of motion. An effective theoretical
approach, introduced by M\"uller et al., describes the cargo dynamics as a
tug-of-war between different kinds of motors. An alternative approach has been
suggested recently by Kunwar et al., who considered the coupling between motor
and cargo in more detail. Based on this framework we introduce a model
considering single motor positions which we propagate in continuous time.
Furthermore, we analyze the possible influence of the discrete time update
schemes used in previous publications on the system's dynamic.Comment: Cenference proceedings - Traffic and Granular Flow 1
The interaction of 11Li with 208Pb
Background: 11Li is one of the most studied halo nuclei. The fusion of 11Li
with 208Pb has been the subject of a number of theoretical studies with widely
differing predictions, ranging over four orders of magnitude, for the fusion
excitation function.
Purpose: To measure the excitation function for the 11Li + 208Pb reaction.
Methods: A stacked foil/degrader assembly of 208Pb targets was irradiated
with a 11Li beam producing center of target beam energies from above barrier to
near barrier energies (40 to 29 MeV). The intensity of the 11Li beam (chopped)
was 1250 p/s and the beam on-target time was 34 hours. The alpha-decay of the
stopped evaporation residues was detected in a alpha-detector array at each
beam energy in the beam-off period (the beam was on for <= 5 ns and then off
for 170 ns).
Results: The 215At evaporation residues were associated with the fusion of
11Li with 208Pb. The 213,214At evaporation residues were formed by the breakup
of 11Li into 9Li + 2n, with the 9Li fusing with 208Pb. The 214At evaporation
residue appears to result from a "quasi-breakup" process.
Conclusions: Most of 11Li + 208Pb interactions lead to breakup with a small
fraction (<= 11%) leading to complete fusion.Comment: 25 pages, 11 figure
Measurement of two-halo neutron transfer reaction p(Li,Li)t at 3 MeV
The p(\nuc{11}{Li},\nuc{9}{Li})t reaction has been studied for the first time
at an incident energy of 3 MeV delivered by the new ISAC-2 facility at
TRIUMF. An active target detector MAYA, build at GANIL, was used for the
measurement. The differential cross sectionshave been determined for
transitions to the \nuc{9}{Li} ground andthe first excited states in a wide
range of scattering angles. Multistep transfer calculations using different
\nuc{11}{Li} model wave functions, shows that wave functions with strong
correlations between the halo neutrons are the most successful in reproducing
the observation.Comment: 6 pages, 3 figures, submitted to Physical Review Letter
Physics of dark energy particles
We consider the astrophysical and cosmological implications of the existence
of a minimum density and mass due to the presence of the cosmological constant.
If there is a minimum length in nature, then there is an absolute minimum mass
corresponding to a hypothetical particle with radius of the order of the Planck
length. On the other hand, quantum mechanical considerations suggest a
different minimum mass. These particles associated with the dark energy can be
interpreted as the ``quanta'' of the cosmological constant. We study the
possibility that these particles can form stable stellar-type configurations
through gravitational condensation, and their Jeans and Chandrasekhar masses
are estimated. From the requirement of the energetic stability of the minimum
density configuration on a macroscopic scale one obtains a mass of the order of
10^55 g, of the same order of magnitude as the mass of the universe. This mass
can also be interpreted as the Jeans mass of the dark energy fluid. Furthermore
we present a representation of the cosmological constant and of the total mass
of the universe in terms of `classical' fundamental constants.Comment: 10 pages, no figures; typos corrected, 4 references added; 1
reference added; reference added; entirely revised version, contains new
parts, now 14 page
Progress at the Heidelberg EBIT
Two years after the relocation of the Heidelberg EBIT, several experiments are already in operation. Spectroscopic measurements in the optical region have delivered the most precise reported wavelengths for highly charged ions, in the case of the forbidden transitions of Ar XIV and Ar XV. The lifetimes of the metastable levels involved in those transitions has been determined with an error of less than 0.2%. A new, fully automatized x-ray crystal spectrometer allows systematic measurements with very high precision and reproducibility. Absolute measurements of the Lyman series of H-like ions are currently underway. Dielectronic recombination studies have yielded information on rare processes, as two-electron-one photon transitions in Ar16+, or the interference effects between dielectronic and radiative recombination in Hg77+. The apparatus can now operate at electron beam currents of more than 500 mA, and energies up to 100 keV. A further beam energy increase is planned in the near future. Ions can be extracted from the trap and transported to external experiments. Up to 4 x 107 Ar16+ ions per second can be delivered to a 1 cm diameter target at 10 m distance. Charge-exchange experiments with U64+ colliding with a cold He atomic beam have been carried out, as well as experiments aiming at the optimization of the charge state distribution of the extracted via dielectronic recombination. Two new EBITs, currently in advanced state of construction in Heidelberg, will be used for experiments at the VUV free electron laser at TESLA (Hamburg) and for the charge breeding of short-lived radioactive isotopes at the TRIUMF ISAC facility
Benchmarking High-Field Few-Electron Correlation and QED Contributions in Hgâ·â”âș to Hgâ·âžâș Ions. I. Experiment
The photorecombination of highly charged few-electron mercury ions Hg75+ to Hg78+ has been explored with the Heidelberg electron beam ion trap. By monitoring the emitted x rays (65-76 keV) and scanning the electron beam energy (45-54 keV) over the KLL dielectronic recombination (DR) region, the energies of state-selected DR resonances were determined to within ±4 eV (relative) and ±14 eV (absolute). At this level of experimental accuracy, it becomes possible to make a detailed comparison to various theoretical approaches and methods, all of which include quantum electrodynamic (QED) effects and finite nuclear size contributions (for a 1s electron, these effects can be as large as 160 and 50 eV, respectively). In He-like Hg78+, a good agreement between the experimental results and the calculations has been found. However, for the capture into Li-, Be-, and B-like ions, significant discrepancies have been observed for specific levels. The discrepancies suggest the need for further theoretical and experimental studies with other heavy ions along these isoelectronic sequences
Magneto-Optic Trapping of ÎČ-Decaying 38Km, 37K From an On-Line Isotope Separator
A magneto-optic trap (MOT) can provide a well-polarized, backing-free, localized source of radioactive atoms for ÎČ-decay experiments. We have trapped approximately 6000 atoms of 38Km ( t1/2 = 0.925s) and 2000 atoms of 37K (1.226 s) produced at the TRIUMF on-line separator TISOL in a vapor-cell MOT. We have measured optical isotope shifts and deduced the nuclear charge radii, which show an unusual lack of change at the neutron number N = 20 shell closure. Plans include a search for scalar contributions to the ÎČ+- Îœ correlation in the 0+â0+ decay of 38Km
The proline-rich domain of tau plays a role in interactions with actin
<p>Abstract</p> <p>Background</p> <p>The microtubule-associated protein tau is able to interact with actin and serves as a cross-linker between the microtubule and actin networks. The microtubule-binding domain of tau is known to be involved in its interaction with actin. Here, we address the question of whether the other domains of tau also interact with actin.</p> <p>Results</p> <p>Several tau truncation and deletion mutants were constructed, namely N-terminal region (tauN), proline-rich domain (tauPRD), microtubule binding domain (tauMTBD) and C-terminal region (tauC) truncation mutants, and microtubule binding domain (tauÎMTBD) and proline-rich domain/microtubule binding domain (tauÎPRD&MTBD) deletion mutants. The proline-rich domain truncation mutant (tauPRD) and the microtubule binding domain deletion mutant (tauÎMTBD) promoted the formation of actin filaments. However, actin assembly was not observed in the presence of the N-terminal and C-terminal truncation mutants. These results indicate that the proline-rich domain is involved in the association of tau with G-actin. Furthermore, results from co-sedimentation, solid phase assays and electron microscopy showed that the proline-rich domain is also capable of binding to F-actin and inducing F-actin bundles. Using solid phase assays to analyze apparent dissociation constants for the binding of tau and its mutants to F-actin resulted in a sequence of affinity for F-actin: tau >> microtubule binding domain > proline-rich domain. Moreover, we observed that the proline-rich domain was able to associate with and bundle F-actin at physiological ionic strength.</p> <p>Conclusion</p> <p>The proline-rich domain is a functional structure playing a role in the association of tau with actin. This suggests that the proline-rich domain and the microtubule-binding domain of tau are both involved in binding to and bundling F-actin.</p
- âŠ