172 research outputs found

    Prevalence and risk factors of low back pain among undergraduate students of a sports and physical education institute in Tunisia

    Get PDF
    Introduction: For obvious reasons, athletes are at greater risk of sustaining a lumber (lower) spine injury due to physical activity. To our knowledge, no previous studies have examined the prevalence of low back pain (LBP) in a Tunisian sports and physical education institute.Aim: To assess the prevalence of LBP in different sports among students studying in a sports and physical education institute in Tunisia, to determine the causes of the injuries, and to propose solutions.Methods: A total of 3,379 boys and 2,579 girls were studied. A retrospective cross-sectional survey was conducted on a group of students aged 18.524.5 years at the Higher Institute of Sport and Physical Education of Sfax to estimate the prevalence of LBP and its relation to the type of sports. Data on age, weight, height, smoking, and the sport in which the student was injured in the low back were collected from the institute health service records from 2005 until 2013.Results: LBP was reported by 879 of the 5,958 study participants (14.8%). The prevalence of LBP was significantly higher (pB0.001) in females (17.6%) than in males (12.5%). LBP prevalence did not differ by body mass index or smoking habit (p0.05). The sports associated with the higher rates of LBP were gymnastics, judo, handball, and volleyball, followed by basketball and athletics.Conclusion: LBP is frequent among undergraduate students of a sports and physical education institute in Tunisia. It is strongly associated with fatigue after the long periods of training in different sports. Gymnastics, judo, handball, and volleyball were identified as high-risk sports for causing LBP.Keywords: low back pain; sports students; sports training; risk factor

    Intergroup conflict: origins, dynamics and consequences across taxa

    Get PDF
    Although uniquely destructive and wasteful, intergroup conflict and warfare are not confined to humans. They are seen across a range of group-living species, from social insects, fishes and birds to mammals, including nonhuman primates. With its unique collection of theory, research and review contributions from biology, anthropology and economics, this theme issue provides novel insights into intergroup conflict across taxa. Here, we introduce and organize this theme issue on the origins and consequences of intergroup conflict. We provide a coherent framework by modelling intergroup conflicts as multi-level games of strategy in which individuals within groups cooperate to compete with (individuals in) other groups for scarce resources, such as territory, food, mating opportunities, power and influence. Within this framework, we identify cross-species mechanisms and consequences of (participating in) intergroup conflict. We conclude by highlighting crosscutting innovations in the study of intergroup conflict set forth by individual contributions. These include, among others, insights on how within-group heterogeneities and leadership relate to group conflict, how intergroup conflict shapes social organization and how climate change and environmental degradation transition intergroup relations from peaceful coexistence to violent conflict.This article is part of the theme issue ‘Intergroup conflict across taxa’.Social decision makin

    Lung function profiles and aerobic capacity of adult cigarette and hookah smokers after 12 weeks intermittent training

    Get PDF
    Introduction: Pulmonary function is compromised in most smokers. Yet it is unknown whether exercise training improves pulmonary function and aerobic capacity in cigarette and hookah smokers and whether these smokers respond in a similar way as do non-smokers.Aim: To evaluate the effects of an interval exercise training program on pulmonary function and aerobic capacity in cigarette and hookah smokers.Methods: Twelve cigarette smokers, 10 hookah smokers, and 11 non-smokers participated in our exercise program. All subjects performed 30 min of interval exercise (2 min of work followed by 1 min of rest) three times a week for 12 weeks at an intensity estimated at 70% of the subject’s maximum aerobic capacity (VO2max). Pulmonary function was measured using spirometry, and maximum aerobic capacity was assessed by maximal exercise testing on a treadmill before the beginning and at the end of the exercise training program.Results: As expected, prior to the exercise intervention, the cigarette and hookah smokers had significantly lower pulmonary function than the non-smokers. The 12-week exercise training program did not significantly affect lung function as assessed by spirometry in the non-smoker group. However, it significantly increased both forced expiratory volume in 1 second and peak expiratory flow (PEF) in the cigarette smoker group, and PEF in the hookah smoker group. Our training program had its most notable impact on the cardiopulmonary system of smokers. In the non-smoker and cigarette smoker groups, the training program significantly improved VO2max (4.4 and 4.7%, respectively), v VO2max (6.7 and 5.6%, respectively), and the recovery index (7.9 and 10.5%, respectively).Conclusions: After 12 weeks of interval training program, the increase of VO2max and the decrease of recovery index and resting heart rate in the smoking subjects indicated better exercise tolerance. Although the intermittent training program altered pulmonary function only partially, both aerobic capacity and life quality were improved. Intermittent training should be advised in the clinical setting for subjects with adverse health behaviors.Keywords: cigarette smokers; hookah smokers; pulmonary function; aerobic capacity; interval trainin

    Enhancing Hygrothermal Performance in Multi-Zone Constructions through Phase Change Material Integration

    Get PDF
    \ua9 2024, Tech Science Press. All rights reserved.As buildings evolve to meet the challenges of energy efficiency and indoor comfort, phase change materials (PCM) emerge as a promising solution due to their ability to store and release latent heat. This paper explores the transformative impact of incorporating PCM on the hygrothermal dynamics of multi-zone constructions. The study focuses on analyzing heat transfer, particularly through thermal conduction, in a wall containing PCM. A novel approach was proposed, wherein the studied system (sensitive balance) interacts directly with a latent balance to realistically define the behavior of specific humidity and mass flow rates. In addition, a numerical model implemented in MATLAB software has been developed to investigate the effect of integrating PCM on the hygrothermal balances inside the building. The obtained results indicate a consistent response in internal temperatures, specific humidity, and mass flow rates, with temperature differences ranging from 5\ub0C to 13\ub0C and a maximum phase shift of 13 h. In addition, the findings provided valuable insights into optimizing the design and performance of multi-zone constructions, offering a sustainable pathway for enhancing building resilience and occupant well-being

    Exergy Analysis of a Solar Vapor Compression Refrigeration System Using R1234ze(E) as an Environmentally Friendly Replacement of R134a

    Get PDF
    \ua9 2024 The Authors.Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy. The rapid advancement of green cooling technology presents numerous solar-powered refrigeration systems as viable alternatives to traditional refrigeration equipment. Exergy analysis is a key in identifying actual thermodynamic losses and improving the environmental and economic efficiency of refrigeration systems. In this study exergy analyze has been conducted for a solar-powered vapor compression refrigeration (SP-VCR) system in the region of Gharda\uefa (Southern Algeria) utilizing R1234ze(E) f luid as an eco-friendly substitute for R134a refrigerant. A MATLAB-based numerical model was developed to evaluate losses in different system components and the exergy efficiency of the SP-VCR system. Furthermore, a parametric study was carried-out to analyze the impact of various operating conditions on the system’s exergy destruction and efficiency. The obtained results revealed that, for both refrigerants, the compressor exhibited the highest exergy destruction, followed by the condenser, expansion valve, and evaporator. However, the system using R1234ze(E) demonstrated lower irreversibility compared to that using R134a refrigerant. The improvements made with R1234ze are 71.95% for the compressor, 39.13% for the condenser, 15.38% for the expansion valve, 5% for the evaporator, and 54.76% for the overall system, which confirm the potential of R1234ze(E) as a promising alternative to R134a for cooling applications

    Modeling and Optimization of Hybrid Fenton and Ultrasound Process for Crystal Violet Degradation Using AI Techniques

    Get PDF
    \ua9 2023 by the authors. This study conducts a comprehensive investigation to optimize the degradation of crystal violet (CV) dye using the Fenton process. The main objective is to improve the efficiency of the Fenton process by optimizing various physicochemical factors such as the Fe2+ concentration, H2O2 concentration, and pH of the solution. The results obtained show that the optimal dosages of Fe2+ and H2O2 giving a maximum CV degradation (99%) are 0.2 and 3.13 mM, respectively. The optimal solution pH for CV degradation is 3. The investigation of the type of acid for pH adjustment revealed that sulfuric acid is the most effective one, providing 100% yield, followed by phosphoric acid, hydrochloric acid, and nitric acid. Furthermore, the examination of sulfuric acid concentration shows that an optimal concentration of 0.1 M is the most effective for CV degradation. On the other hand, an increase in the initial concentration of the dye leads to a reduction in the hydroxyl radicals formed (HO•), which negatively impacts CV degradation. A concentration of 10 mg/L of CV gives complete degradation of dye within 30 min following the reaction. Increasing the solution temperature and stirring speed have a negative effect on dye degradation. Moreover, the combination of ultrasound with the Fenton process resulted in a slight enhancement in the CV degradation, with an optimal stirring speed of 300 rpm. Notably, the study incorporates the use of Gaussian process regression (GPR) modeling in conjunction with the Improved Grey Wolf Optimization (IGWO) algorithm to accurately predict the optimal degradation conditions. This research, through its rigorous investigation and advanced modeling techniques, offers invaluable insights and guidelines for optimizing the Fenton process in the context of CV degradation, thereby achieving the twin goals of cost reduction and environmental impact minimization

    Green Pathways for the Enzymatic Synthesis of Furan-Based Polyesters and Polyamides

    Get PDF
    The attention towards the utilization of sustainable feedstocks for polymer synthesis has grown exponentially in recent years. One of the spotlighted monomers derived from renewable resources is 2,5-furandicarboxylic acid (FDCA), one of the most promising bio-based monomers, due to its resemblance to petroleum-based terephthalic acid. Very interesting synthetic routes using this monomer have been reported in the last two decades. Combining the use of bio-based monomers and non-toxic chemicals via enzymatic polymerizations can lead to a robust and favorable approach towards a greener technology of bio-based polymer production. In this chapter, a brief introduction to FDCA-based monomers and enzymatic polymerizations is given, particularly focusing on furan-based polymers and their polymerization. In addition, an outline of the recent developments in the field of enzymatic polymerizations is discussed. </p

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject
    corecore