18 research outputs found

    Myeloid Cells in Intact Human Cervical Explants Capture HIV and Can Transmit It to CD4 T Cells

    Get PDF
    The importance of myeloid cells in HIV transmission in the female genital tract is uncertain. Because it is difficult to study the early events in HIV transmission in humans, most of our knowledge is based on animal models of SIV infection in Rhesus macaques and more recently HIV infection in humanized mice. However, these models may not accurately recapitulate transmission in the human genital tract. CD14+ myeloid cells are the most abundant hematopoietic cells in the human cervical mucosa, comprising 40–50% of CD45+ mononuclear cells. Most CD14+ cells are CD14+CD11c– macrophages and about a third are CD14+CD11c+ tissue dendritic cells, which express the HIV-binding receptors, DC-SIGN and CX3CR1. To examine the role of mucosal myeloid cells in HIV transmission, we infected intact healthy human cervical explants with CCR5–tropic HIV-1 ex vivo and then sorted populations of cervical immune cells 20 h later to determine whether they took up virus and could transmit it to activated CD4 T cells. Viral RNA was detected in CD14+ myeloid cells in all but one of 10 donor tissue samples, even when HIV RNA was not detected in CD4+ T cells. HIV RNA was detected predominantly in CD14+CD11c+ dendritic cells rather than in CD14+CD11c– macrophages. The reverse transcriptase inhibitor, nevirapine, reduced HIV RNA in CD4+ T cells, but not in CD14+ cells. Moreover, integrated HIV DNA were not detected above background in myeloid cells but was detected in T cells. These data suggest that although HIV replicates in T cells, myeloid cells in the female genital mucosa capture viral particles, but do not replicate the virus at early timepoints. However, sorted CD14+ myeloid cells isolated 20 h post-infection from 5 HIV-infected cervical explants tested all transmitted HIV to activated CD4+ T cells, while only 1 sample of sorted CD4+ T cells did. Thus, myeloid cells in human cervical tissue capture HIV and are an important early cellular storage site of infectious virus

    Biocompatibility of Solid-Dosage Forms of Anti-Human Immunodeficiency Virus Type 1 Microbicides with the Human Cervicovaginal Mucosa Modeled Ex Vivo

    No full text
    Topical anti-human immunodeficiency virus (HIV) microbicides are being sought to reduce the spread of HIV type 1 (HIV-1) during sexual intercourse. The success of this strategy depends upon the selection of formulations compatible with the natural vaginal mucosal barrier. This study applied ex vivo-modeled human cervicovaginal epithelium to evaluate experimental solid-dosage forms of the anti-HIV-1 microbicide cellulose acetate 1,2-benzenedicarboxylate (CAP) and over-the-counter (OTC) vaginal products for their impact on inflammatory mediators regarded as potential HIV-1-enhancing risk factors. We assessed product-induced imbalances between interleukin-1α (IL-1α) and IL-1β and the natural IL-1 receptor antagonist (IL-1RA) and changes in levels of IL-6, tumor necrosis factor alpha, IL-8, gamma interferon inducible protein 10 (IP-10), and macrophage inflammatory protein 3α (MIP-3α), known to recruit and activate monocytes, dendritic cells, and T cells to the inflamed mucosa. CAP film and gel formulation, similarly to the hydroxyethylcellulose universal vaginal placebo gel and the OTC K-Y moisturizing gel, were nontoxic and caused no significant changes in any inflammatory biomarker. In contrast, OTC vaginal cleansing and contraceptive films containing octoxynol-9 or nonoxynol-9 (N-9) demonstrated similar levels of toxicity but distinct immunoinflammatory profiles. IL-1α, IL-1β, IL-8, and IP-10 were increased after treatment with both OTC vaginal cleansing and contraceptive films; however, MIP-3α was significantly elevated by the N-9-based film only (P < 0.01). Although both films increased extracellular IL-1RA, the cleansing film only significantly elevated the IL-1RA/IL-1 ratio (P < 0.001). The N-9-based film decreased intracellular IL-1RA (P < 0.05), which has anti-inflammatory intracrine functions. This study identifies immunoinflammatory biomarkers that can discriminate between formulations better than toxicity assays and should be clinically validated in relevance to the risk of HIV-1 acquisition

    Trichomonas vaginalis Lipophosphoglycan Triggers a Selective Upregulation of Cytokines by Human Female Reproductive Tract Epithelial Cells

    No full text
    Trichomonas vaginalis is one of the most common nonviral sexually transmitted human infections and, worldwide, has been linked to increased incidence of human immunodeficiency virus type 1 transmission, preterm delivery, low birth weight, cervical cancer, and vaginitis. The molecular pathways that are important in initiating host inflammatory and immune responses to T. vaginalis are poorly understood. Here we report interactions of human cervicovaginal epithelial cells with the most abundant cell surface glycoconjugate of the parasite, the T. vaginalis lipophosphoglycan (LPG). Purified LPG mediated the adhesion of parasites to human vaginal epithelial cells in a dose-dependent manner. Furthermore, T. vaginalis LPG (but not LPG from Tritrichomonas foetus, the causative agent of bovine trichomoniasis) induced a selective upregulation of chemotactic cytokines by human endocervical, ectocervical, and vaginal epithelial cells, which do not express Toll-like receptor 4/MD2. The T. vaginalis LPG triggered interleukin 8 (IL-8), which promotes the adhesion and transmigration of neutrophils across the endothelium, and macrophage inflammatory protein 3α, which is a chemoattractant for immune cells and is essential for dendritic cell maturation. These effects were dose dependent and sustained in the absence of cytotoxicity and IL-1β release and utilized, at least in part, a signaling pathway independent from the Toll-like/IL-1 receptor adaptor protein MyD88

    TREX1 Knockdown Induces an Interferon Response to HIV that Delays Viral Infection in Humanized Mice

    Get PDF
    Despite their antiviral effect, the in vivo effect of interferons on HIV transmission is difficult to predict, because interferons also activate and recruit HIV-susceptible cells to sites of infection. HIV does not normally induce type I interferons in infected cells, but does if TREX1 is knocked down. Here, we investigated the effect of topical TREX1 knockdown and local interferon production on HIV transmission in human cervicovaginal explants and humanized mice. In explants in which TREX1 was knocked down, HIV induced interferons, which blocked infection. In humanized mice, even though TREX1 knockdown increased infiltrating immune cells, it delayed viral replication for 3–4 weeks. Similarly intravaginal application of type I interferons the day before HIV infection induced interferon responsive genes, reduced inflammation, and decreased viral replication. However, intravenous interferon enhanced inflammation and infection. Thus, in models of human sexual transmission, a localized interferon response inhibits HIV transmission but systemic interferons do not
    corecore