97 research outputs found

    Automated Detection of External Ventricular and Lumbar Drain-Related Meningitis Using Laboratory and Microbiology Results and Medication Data

    Get PDF
    OBJECTIVE: Monitoring of healthcare-associated infection rates is important for infection control and hospital benchmarking. However, manual surveillance is time-consuming and susceptible to error. The aim was, therefore, to develop a prediction model to retrospectively detect drain-related meningitis (DRM), a frequently occurring nosocomial infection, using routinely collected data from a clinical data warehouse. METHODS: As part of the hospital infection control program, all patients receiving an external ventricular (EVD) or lumbar drain (ELD) (2004 to 2009; n = 742) had been evaluated for the development of DRM through chart review and standardized diagnostic criteria by infection control staff; this was the reference standard. Children, patients dying <24 hours after drain insertion or with <1 day follow-up and patients with infection at the time of insertion or multiple simultaneous drains were excluded. Logistic regression was used to develop a model predicting the occurrence of DRM. Missing data were imputed using multiple imputation. Bootstrapping was applied to increase generalizability. RESULTS: 537 patients remained after application of exclusion criteria, of which 82 developed DRM (13.5/1000 days at risk). The automated model to detect DRM included the number of drains placed, drain type, blood leukocyte count, C-reactive protein, cerebrospinal fluid leukocyte count and culture result, number of antibiotics started during admission, and empiric antibiotic therapy. Discriminatory power of this model was excellent (area under the ROC curve 0.97). The model achieved 98.8% sensitivity (95% CI 88.0% to 99.9%) and specificity of 87.9% (84.6% to 90.8%). Positive and negative predictive values were 56.9% (50.8% to 67.9%) and 99.9% (98.6% to 99.9%), respectively. Predicted yearly infection rates concurred with observed infection rates. CONCLUSION: A prediction model based on multi-source data stored in a clinical data warehouse could accurately quantify rates of DRM. Automated detection using this statistical approach is feasible and could be applied to other nosocomial infections

    High prevalence of fecal carriage of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a pediatric unit in Madagascar

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extended-spectrum β-lactamase (ESBL)-producing <it>Enterobacteriaceae </it>have spread worldwide but there are few reports on carriage in hospitals in low-income countries. ESBL-producing <it>Enterobacteriaceae </it>(ESBL-PE) have been increasingly isolated from nosocomial infections in Antananarivo, Madagascar.</p> <p>Methods</p> <p>we conducted a prevalence survey in a pediatric unit from March to April 2008 Patient rectal swabs were sampled on the first and the last day of hospitalization. Medical staff and environment were also sampled. Rectal and environmental swabs were immediately plated onto Drigalski agar supplemented with 3 mg/liter of ceftriaxon.</p> <p>Results</p> <p>Fecal carriage was detected in 21.2% of 244 infants on admission and 57.1% of 154 on discharge, after more than 48 hours of hospitalization (p < 0.001). The species most frequently detected on admission were <it>Escherichia coli and Klebsiella pneumoniae </it>(36.9%), whereas, on discharge, <it>K. pneumoniae </it>was the species most frequently detected (52.7%). ESBL-associated resistances were related to trimethoprim-sulfamethoxazole (91.3%), gentamicin (76.1%), ciprofloxacin (50.0%), but not to amikacin and imipenem. The increased prevalence of carriage during hospitalization was related to standard antimicrobial therapy.</p> <p>Conclusion</p> <p>The significant emergence of multidrug-resistant enteric pathogens in Malagasy hospitals poses a serious health threat requiring the implementation of surveillance and control measures for nosocomial infections.</p

    Intestinal carriage of Staphylococcus aureus: How does its frequency compare with that of nasal carriage and what is its clinical impact?

    Get PDF
    The bacterial species Staphylococcus aureus, including its methicillin-resistant variant (MRSA), finds its primary ecological niche in the human nose, but is also able to colonize the intestines and the perineal region. Intestinal carriage has not been widely investigated despite its potential clinical impact. This review summarizes literature on the topic and sketches the current state of affairs from a microbiological and infectious diseases' perspective. Major findings are that the average reported detection rate of intestinal carriage in healthy individuals and patients is 20% for S. aureus and 9% for MRSA, which is approximately half of that for nasal carriage. Nasal carriage seems to predispose to intestinal carriage, but sole intestinal carriage occurs relatively frequently and is observed in 1 out of 3 intestinal carriers, which provides a rationale to include intestinal screening for surveillance or in outbreak settings. Colonization of the intestinal tract with S. aureus at a young age occurs at a high frequency and may affect the host's immune system. The frequency of intestinal carriage is generally underestimated and may significantly contribute to bacterial dissemination and subsequent risk of infections. Whether intestinal rather than nasal S. aureus carriage is a primary predictor for infections is still ill-defined

    New materials and devices for preventing catheter-related infections

    Get PDF
    Catheters are the leading source of bloodstream infections for patients in the intensive care unit (ICU). Comprehensive unit-based programs have proven to be effective in decreasing catheter-related bloodstream infections (CR-BSIs). ICU rates of CR-BSI higher than 2 per 1,000 catheter-days are no longer acceptable. The locally adapted list of preventive measures should include skin antisepsis with an alcoholic preparation, maximal barrier precautions, a strict catheter maintenance policy, and removal of unnecessary catheters. The development of new technologies capable of further decreasing the now low CR-BSI rate is a major challenge. Recently, new materials that decrease the risk of skin-to-vein bacterial migration, such as new antiseptic dressings, were extensively tested. Antimicrobial-coated catheters can prevent CR-BSI but have a theoretical risk of selecting resistant bacteria. An antimicrobial or antiseptic lock may prevent bacterial migration from the hub to the bloodstream. This review discusses the available knowledge about these new technologies
    corecore