612 research outputs found
The effects of acute inflammation on cognitive functioning and emotional processing in humans: A systematic review of experimental studies
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record Objective The cognitive neuropsychological model of depression proposes that negative biases in the processing of emotionally salient information have a central role in the development and maintenance of depression. We have conducted a systematic review to determine whether acute experimental inflammation is associated with changes to cognitive and emotional processing that are thought to cause and maintain depression. Methods We identified experimental studies in which healthy individuals were administered an acute inflammatory challenge (bacterial endotoxin/vaccination) and standardised tests of cognitive function were performed. Results Fourteen references were identified, reporting findings from 12 independent studies on 345 participants. Methodological quality was rated strong or moderate for 11 studies. Acute experimental inflammation was triggered using a variety of agents (including endotoxin from E. coli, S. typhi, S. abortus Equi and Hepatitis B vaccine) and cognition was assessed over hours to months, using cognitive tests of i) attention/executive functioning, ii) memory and iii) social/emotional processing. Studies found mixed evidence that acute experimental inflammation caused changes to attention/executive functioning (2 of 6 studies showed improvements in attention executive function compared to control), changes in memory (3 of 5 studies; improved reaction time: reduced memory for object proximity: poorer immediate and delayed memory) and changes to social/emotional processing (4 of 5 studies; reduced perception of emotions, increased avoidance of punishment/loss experiences, and increased social disconnectedness). Conclusions Acute experimental inflammation causes negative biases in social and emotional processing that could explain observed associations between inflammation and depression.National Institute for Health Research (NIHR
A 2.75-Approximation Algorithm for the Unconstrained Traveling Tournament Problem
A 2.75-approximation algorithm is proposed for the unconstrained traveling
tournament problem, which is a variant of the traveling tournament problem. For
the unconstrained traveling tournament problem, this is the first proposal of
an approximation algorithm with a constant approximation ratio. In addition,
the proposed algorithm yields a solution that meets both the no-repeater and
mirrored constraints. Computational experiments show that the algorithm
generates solutions of good quality.Comment: 12 pages, 1 figur
Host-Derived Artificial MicroRNA as an Alternative Method to Improve Soybean Resistance to Soybean Cyst Nematode
Citation: Tian, B., Li, J. R., Oakley, T. R., Todd, T. C., & Trick, H. N. (2016). Host-Derived Artificial MicroRNA as an Alternative Method to Improve Soybean Resistance to Soybean Cyst Nematode. Genes, 7(12), 13. doi:10.3390/genes7120122Citation: Tian, B., . . . & Trick, H. (2016). Host-Derived Artificial MicroRNA as an Alternative Method to Improve Soybean Resistance to Soybean Cyst Nematode. Genes, 7(12), 13.
https://doi.org/10.3390/genes7120122The soybean cyst nematode (SCN), Heterodera glycines, is one of the most important pests limiting soybean production worldwide. Novel approaches to managing this pest have focused on gene silencing of target nematode sequences using RNA interference (RNAi). With the discovery of endogenous microRNAs as a mode of gene regulation in plants, artificial microRNA (amiRNA) methods have become an alternative method for gene silencing, with the advantage that they can lead to more specific silencing of target genes than traditional RNAi vectors. To explore the application of amiRNAs for improving soybean resistance to SCN, three nematode genes (designated as J15, J20, and J23) were targeted using amiRNA vectors. The transgenic soybean hairy roots, transformed independently with these three amiRNA vectors, showed significant reductions in SCN population densities in bioassays. Expression of the targeted genes within SCN eggs were downregulated in populations feeding on transgenic hairy roots. Our results provide evidence that host-derived amiRNA methods have great potential to improve soybean resistance to SCN. This approach should also limit undesirable phenotypes associated with off-target effects, which is an important consideration for commercialization of transgenic crops
Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air
International audienceResults from an intercomparison of several currently used in-situ techniques for the measurement of atmospheric formaldehyde (CH2O) are presented. The measurements were carried out at Bresso, an urban site in the periphery of Milan (Italy) as part of the FORMAT-I field campaign. Eight instruments were employed by six independent research groups using four different techniques: Differential Optical Absorption Spectroscopy (DOAS), Fourier Transform Infra Red (FTIR) interferometry, the fluorimetric Hantzsch reaction technique (five instruments) and a chromatographic technique employing C18-DNPH-cartridges (2,4-dinitrophenylhydrazine). White type multi-reflection systems were employed for the optical techniques in order to avoid spatial CH2O gradients and ensure the sampling of nearly the same air mass by all instruments. Between 23 and 31 July 2002, up to 13 ppbv of CH2O were observed. The concentrations lay well above the detection limits of all instruments. The formaldehyde concentrations determined with DOAS, FTIR and the Hantzsch instruments were found to agree within ±11%, with the exception of one Hantzsch instrument, which gave systematically higher values. The two hour integrated samples by DNPH yielded up to 25% lower concentrations than the data of the continuously measuring instruments averaged over the same time period. The consistency between the DOAS and the Hantzsch method was better than during previous intercomparisons in ambient air with slopes of the regression line not significantly differing from one. The differences between the individual Hantzsch instruments could be attributed in part to the calibration standards used. Possible systematic errors of the methods are discussed
Network conduciveness with application to the graph-coloring and independent-set optimization transitions
We introduce the notion of a network's conduciveness, a probabilistically
interpretable measure of how the network's structure allows it to be conducive
to roaming agents, in certain conditions, from one portion of the network to
another. We exemplify its use through an application to the two problems in
combinatorial optimization that, given an undirected graph, ask that its
so-called chromatic and independence numbers be found. Though NP-hard, when
solved on sequences of expanding random graphs there appear marked transitions
at which optimal solutions can be obtained substantially more easily than right
before them. We demonstrate that these phenomena can be understood by resorting
to the network that represents the solution space of the problems for each
graph and examining its conduciveness between the non-optimal solutions and the
optimal ones. At the said transitions, this network becomes strikingly more
conducive in the direction of the optimal solutions than it was just before
them, while at the same time becoming less conducive in the opposite direction.
We believe that, besides becoming useful also in other areas in which network
theory has a role to play, network conduciveness may become instrumental in
helping clarify further issues related to NP-hardness that remain poorly
understood
W3 Is a New Wax Locus That Is Essential for Biosynthesis of beta-Diketone, Development of Glaucousness, and Reduction of Cuticle Permeability in Common Wheat
Citation: Zhang, Z. Z., Wei, W. J., Zhu, H. L., Challa, G. S., Bi, C. L., Trick, H. N., & Li, W. L. (2015). W3 Is a New Wax Locus That Is Essential for Biosynthesis of beta-Diketone, Development of Glaucousness, and Reduction of Cuticle Permeability in Common Wheat. Plos One, 10(10), 21. doi:10.1371/journal.pone.0140524The cuticle plays important roles in plant development, growth and defense against biotic and abiotic attacks. Crystallized epicuticular wax, the outermost layer of cuticle, is visible as white-bluish glaucousness. In crops like barley and wheat, glaucousness is trait of adaption to the dry and hot cultivation conditions, and hentriacontane-14,16-dione (beta-diketone) and its hydroxy derivatives are the major and unique components of cuticular wax in the upper parts of adult plants. But their biosynthetic pathway and physiological role largely remain unknown. In the present research, we identified a novel wax mutant in wheat cultivar Bobwhite. The mutation is not allelic to the known wax production gene loci W1 and W2, and designated as W3 accordingly. Genetic analysis localized W3 on chromosome arm 2BS. The w3 mutation reduced 99% of beta-diketones, which account for 63.3% of the total wax load of the wild-type. W3 is necessary for beta-diketone synthesis, but has a different effect on beta-diketone hydroxylation because the hydroxy-beta-diketones to beta-diketone ratio increased 11-fold in the w3 mutant. Loss of beta-diketones caused failure to form glaucousness and significant increase of cuticle permeability in terms of water loss and chlorophyll efflux in the w3 mutant. Transcription of 23 cuticle genes from five functional groups was altered in the w3 mutant, 19 down-regulated and four up-regulated, suggesting a possibility that W3 encodes a transcription regulator coordinating expression of cuticle genes. Biosynthesis of beta-diketones in wheat and their implications in glaucousness formation and drought and heat tolerance were discussed.Citation: Zhang, Z., . . . & Wanlong, Li. (2015). W3 Is a New Wax Locus That Is Essential for Biosynthesis of β-Diketone, Development of Glaucousness, and Reduction of Cuticle Permeability in Common Wheat. PLoS One, 10(10), 1-21.
https://doi.org/10.1371/journal.pone.014052
The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry
Euglena gracilis is a highly complex alga belonging to the green plant line that shows characteristics of both plants and animals, while in evolutionary terms it is most closely related to the protozoan parasites Trypanosoma and Leishmania. This well-studied organism has long been known as a rich source of vitamins A, C and E, as well as amino acids that are essential for the human diet. Here we present de novo transcriptome sequencing and preliminary analysis, providing a basis for the molecular and functional genomics studies that will be required to direct metabolic engineering efforts aimed at enhancing the quality and quantity of high value products from E. gracilis. The transcriptome contains over 30?000 protein-encoding genes, supporting metabolic pathways for lipids, amino acids, carbohydrates and vitamins, along with capabilities for polyketide and non-ribosomal peptide biosynthesis. The metabolic and environmental robustness of Euglena is supported by a substantial capacity for responding to biotic and abiotic stress: it has the capacity to deploy three separate pathways for vitamin C (ascorbate) production, as well as producing vitamin E (?-tocopherol) and, in addition to glutathione, the redox-active thiols nor-trypanothione and ovothiol
A carbohydrate-binding protein, B-GRANULE CONTENT 1, influences starch granule size distribution in a dose-dependent manner in polyploid wheat
In Triticeae endosperm (e.g. wheat and barley), starch granules have a bimodal size distribution (with A- and B-type granules) whereas in other grasses the endosperm contains starch granules with a unimodal size distribution. Here, we identify the gene, BGC1 (B-GRANULE CONTENT 1), responsible for B-type starch granule content in Aegilops and wheat. Orthologues of this gene are known to influence starch synthesis in diploids such as rice, Arabidopsis, and barley. However, using polyploid Triticeae species, we uncovered a more complex biological role for BGC1 in starch granule initiation: BGC1 represses the initiation of A-granules in early grain development but promotes the initiation of B-granules in mid grain development. We provide evidence that the influence of BGC1 on starch synthesis is dose dependent and show that three very different starch phenotypes are conditioned by the gene dose of BGC1 in polyploid wheat: normal bimodal starch granule morphology; A-granules with few or no B-granules; or polymorphous starch with few normal A- or B-granules. We conclude from this work that BGC1 participates in controlling B-type starch granule initiation in Triticeae endosperm and that its precise effect on granule size and number varies with gene dose and stage of development
Associative Transcriptomics Study Dissects the Genetic Architecture of Seed Glucosinolate Content in Brassica napus
Breeding new varieties with low seed glucosinolate (GS) concentrations has long been a prime target in Brassica napus. In this study, a novel association mapping methodology termed 'associative transcriptomics' (AT) was applied to a panel of 101 B. napus lines to define genetic regions and also candidate genes controlling total seed GS contents. Over 100,000 informative single-nucleotide polymorphisms (SNPs) and gene expression markers (GEMs) were developed for AT analysis, which led to the identification of 10 SNP and 7 GEM association peaks. Within these peaks, 26 genes were inferred to be involved in GS biosynthesis. A weighted gene co-expression network analysis provided additional 40 candidate genes. The transcript abundance in leaves of two candidate genes, BnaA.GTR2a located on chromosome A2 and BnaC.HAG3b on C9, was correlated with seed GS content, explaining 18.8 and 16.8% of phenotypic variation, respectively. Resequencing of genomic regions revealed six new SNPs in BnaA.GTR2a and four insertions or deletions in BnaC.HAG3b. These deletion polymorphisms were then successfully converted into polymerase chain reaction-based diagnostic markers that can, due to high linkage disequilibrium observed in these regions of the genome, be used for marker-assisted breeding for low seed GS lines
- …