7 research outputs found

    Measuring influenza laboratory capacity: use of a tool to measure improvements

    Full text link
    Abstract Background To collect information, identify training needs, and assist with influenza capacity building voluntary laboratory capacity assessments were conducted using a standardized tool in CDC cooperative agreement countries. To understand the usefulness of comparing results from repeat assessments and to determine if targeted training supported improvements, this paper details comparison of assessment results of conducting 17 repeat laboratory assessments between 2009 and 2013. Methods Laboratory assessments were conducted by SMEs in 17 laboratories (16 countries). We reviewed the quantitative assessment results of the laboratories that conducted both an initial and follow up assessment between 2009 to 2013 using repeated measures of Anova, (Mixed procedure of SAS (9.3)). Additionally, we compared the overall summary scores and the assessor recommendations from the two assessments. Results We were able to document a statistically significant improvement between the first and second assessments both on an aggregate as well as individual indicator score. Within the international capacity tool three of the eight categories recorded statistically significant improvement (equipment, management, and QA/QC), while the other tool categories (molecular, NIC, specimen, safety and virology) showed improvement in scores although not statistically significant. Conclusions We found that using a standardized tool and quantitative framework is useful for documenting capacity and performance improvement in identified areas over time. The use of the tool and standard reports with assessor recommendations assisted laboratories with establishing, maintaining, and improving influenza laboratory practices. On-going assessments and the consistent application of the analytic framework over time will continue to aid in building a measurement knowledge base for laboratory capacity

    Additional file 1: Table S1. of Measuring influenza laboratory capacity: use of a tool to measure improvements

    Full text link
    Statistical Significance between First and Second Assessments on the adjusted scores (with the arcsine transformation)*. (DOC 38 kb

    Can mentorship improve laboratory quality? A case study from influenza diagnostic laboratories in Southeast Europe

    Full text link
    Abstract Background Strengthening the quality of laboratory diagnostics is a key part of building global health capacity. In 2015, the Centers for Disease Control and Prevention (CDC), the Southeast European Center for Surveillance and Control of Infectious Diseases (SECID), WHO European Regional Office (WHO EURO) and American Public Health Laboratories (APHL) collaborated to address laboratory quality training needs in Southeast Europe. Together, they developed a quality assurance (QA) mentorship program for six national laboratories (Laboratories A-E) in five countries utilizing APHL international consultants. The primary goal of the mentorship program was to help laboratories become recognized by WHO as National Influenza Centers (NICs). The program aimed to do this by strengthening influenza laboratory capacity by implementing quality management systems (QMS) action steps. After 1 year, we evaluated participants’ progress by the proportion of QMS action steps they had successfully implemented, as well as the value of mentorship as perceived by laboratory mentees, mentors, and primary program stakeholders from SECID and WHO EURO. Methods To understand perceived value we used the qualitative method of semi-structured interviews, applying grounded theory to the thematic analysis. Results Mentees showed clear progress, having completed 32 to 68% [median: 62%] of planned QMS action steps in their laboratories. In regards to the perceived value of the program, we found strong evidence that laboratory mentorship enhances laboratory quality improvement by promoting accountability to QMS implementation, raising awareness of the importance of QMS, and fostering collaborative problem solving. Conclusion In conclusion, we found that significant accomplishments can be achieved when QA programs provide dedicated technical mentorship for QMS implementation. Since the start of the mentoring, Laboratory “B” has achieved NIC recognition by WHO, while two other labs made substantial progress and are scheduled for recognition in 2018. In the future, we recommend that mentorship is more inclusive of laboratory directors, and that programs evaluate the amount of staff time needed for mentorship activities, including lab-based assessments and mentoring

    Mapping of the US Domestic Influenza Virologic Surveillance Landscape

    Full text link
    Influenza virologic surveillance is critical each season for tracking influenza circulation, following trends in antiviral drug resistance, detecting novel influenza infections in humans, and selecting viruses for use in annual seasonal vaccine production. We developed a framework and process map for characterizing the landscape of US influenza virologic surveillance into 5 tiers of influenza testing: outpatient settings (tier 1), inpatient settings and commercial laboratories (tier 2), state public health laboratories (tier 3), National Influenza Reference Center laboratories (tier 4), and Centers for Disease Control and Prevention laboratories (tier 5). During the 2015–16 season, the numbers of influenza tests directly contributing to virologic surveillance were 804,000 in tiers 1 and 2; 78,000 in tier 3; 2,800 in tier 4; and 3,400 in tier 5. With the release of the 2017 US Pandemic Influenza Plan, the proposed framework will support public health officials in modeling, surveillance, and pandemic planning and response
    corecore