4 research outputs found

    Miniglucagon (MG)-generating endopeptidase, which processes glucagon into MG, is composed of N-arginine dibasic convertase and aminopeptidase B

    No full text
    Miniglucagon (MG), the C-terminal glucagon fragment, processed from glucagon by the MG-generating endopeptidase (MGE) at the Arg17-Arg18 dibasic site, displays biological effects opposite to that of the mother-hormone. This secondary processing occurs in the glucagon- and MG-producing alpha-cells of the islets of Langerhans and from circulating glucagon. We first characterized the enzymatic activities of MGE in culture media from glucagon and MG-secreting alphaTC1.6 cells as made of a metalloendoprotease and an aminopeptidase. We observed that glucagon is a substrate for N-arginine dibasic convertase (NRDc), a metalloendoprotease, and that aminopeptidase B cleaves in vitro the intermediate cleavage products sequentially, releasing mature MG. Furthermore, immunodepletion of either enzyme resulted in the disappearance of the majority of MGE activity from the culture medium. We found RNAs and proteins corresponding to both enzymes in different cell lines containing a MGE activity (mouse alphaTC1.6 cells, rat hepatic FaO, and rat pituitary GH4C1). Using confocal microscopy, we observed a granular immunostaining of both enzymes in the alphaTC1.6 and native rat alpha-cells from islets of Langerhans. By immunogold electron microscopy, both enzymes were found in the mature secretory granules of alpha-cells, close to their substrate (glucagon) and their product (MG). Finally, we found NRDc only in the fractions from perfused pancreas that contain glucagon and MG after stimulation by hypoglycemia. We conclude that MGE is composed of NRDc and aminopeptidase B acting sequentially, providing a molecular basis for this uncommon regulatory process, which should be now addressed in both physiological and pathophysiological situations

    A neuronal isoform of nitric oxide synthase expressed in pancreatic beta-cells controls insulin secretion

    No full text
    Evidence is presented showing that a neuronal isoform of nitric oxide synthase (NOS) is expressed in rat pancreatic islets and INS-1 cells. Sequencing of the coding region indicated a 99.8% homology with rat neuronal NOS (nNOS) with four mutations, three of them resulting in modifications of the amino acid sequence. Double-immunofluorescence studies demonstrated the presence of nNOS in insulin-secreting beta-cells. Electron microscopy studies showed that nNOS was mainly localized in insulin secretory granules and to a lesser extent in the mitochondria and the nucleus. We also studied the mechanism involved in the dysfunction of the beta-cell response to arginine and glucose after nNOS blockade with N(G)-nitro-L-arginine methyl ester. Our data show that miconazole, an inhibitor of nNOS cytochrome c reductase activity, either alone for the experiments with arginine or combined with sodium nitroprusside for glucose, is able to restore normal secretory patterns in response to the two secretagogues. Furthermore, these results were corroborated by the demonstration of a direct enzyme-substrate interaction between nNOS and cytochrome c, which is strongly reinforced in the presence of the NOS inhibitor. Thus, we provide immunochemical and pharmacological evidence that beta-cell nNOS exerts, like brain nNOS, two catalytic activities: a nitric oxide production and an NOS nonoxidating reductase activity, both of which are essential for normal beta-cell function. In conclusion, we suggest that an imbalance between these activities might be implicated in beta-cell dysregulation involved in certain pathological hyperinsulinic states
    corecore