5 research outputs found
The Faint End Slopes Of Galaxy Luminosity Functions In The COSMOS 2-Square Degree Field
We examine the faint-end slope of the rest-frame V-band luminosity function
(LF), with respect to galaxy spectral type, of field galaxies with redshift
z<0.5, using a sample of 80,820 galaxies with photometric redshifts in the
Cosmic Evolution Survey (COSMOS) field. For all galaxy spectral types combined,
the LF slope, alpha, ranges from -1.24 to -1.12, from the lowest redshift bin
to the highest. In the lowest redshift bin (0.02<z<0.1), where the magnitude
limit is M(V) ~ -13, the slope ranges from ~ -1.1 for galaxies with early-type
spectral energy distributions (SEDs), to ~ -1.9 for galaxies with
low-extinction starburst SEDs. In each galaxy SED category (Ell, Sbc, Scd/Irr,
and starburst), the faint-end slopes grow shallower with increasing redshift;
in the highest redshift bin (0.4<z<0.5), the slope is ~ -0.5 and ~ -1.3 for
early-types and starbursts respectively. The steepness of alpha at lower
redshift could be qualitatively explained by large numbers of faint dwarf
galaxies, perhaps of low surface brightness, which are not detected at higher
redshifts.Comment: 24 pages including 5 figures, accepted to ApJ
The faint-end slopes of galaxy luminosity functions in the COSMOS field
We examine the faint-end slope of the rest-frame V-band luminosity function (LF), with respect to galaxy spectral type, of field galaxies with redshift z < 0.5, using a sample of 80,820 galaxies with photometric redshifts in the 2 deg^2 Cosmic Evolution Survey (COSMOS) field. For all galaxy spectral types combined, the LF slope ranges from –1.24 to –1.12, from the lowest redshift bin to the highest. In the lowest redshift bin (0.02 < z < 0.1), where the magnitude limit is MV ≾ − 13, the slope ranges from α ~ − 1.1 for galaxies with early-type spectral energy distributions (SEDs) to α ~ − 1.9 for galaxies with low-extinction starburst SEDs. In each galaxy SED category (early-type, Sbc, Scd+Irr, and starburst), the faint-end slopes grow shallower with increasing redshift; in the highest redshift bin (0.4 < z < 0.5), α ~ − 0.5 and –1.3 for early types and starbursts, respectively. The steepness of α at lower redshifts could be qualitatively explained by LF evolution, or by large numbers of faint dwarf galaxies, perhaps of low surface brightness, that are not detected at higher redshifts
Mapping our Universe in 3D with MITEoR
Mapping our universe in 3D by imaging the redshifted 21 cm line from neutral
hydrogen has the potential to overtake the cosmic microwave background as our
most powerful cosmological probe, because it can map a much larger volume of
our Universe, shedding new light on the epoch of reionization, inflation, dark
matter, dark energy, and neutrino masses. We report on MITEoR, a pathfinder
low-frequency radio interferometer whose goal is to test technologies that
greatly reduce the cost of such 3D mapping for a given sensitivity. MITEoR
accomplishes this by using massive baseline redundancy both to enable automated
precision calibration and to cut the correlator cost scaling from N^2 to NlogN,
where N is the number of antennas. The success of MITEoR with its 64
dual-polarization elements bodes well for the more ambitious HERA project,
which would incorporate many identical or similar technologies using an order
of magnitude more antennas, each with dramatically larger collecting area.Comment: To be published in proceedings of 2013 IEEE International Symposium
on Phased Array Systems & Technolog
MITEoR: a scalable interferometer for precision 21 cm cosmology
We report on the MIT Epoch of Reionization (MITEoR) experiment, a pathfinder low-frequency radio interferometer whose goal is to test technologies that improve the calibration precision and reduce the cost of the high-sensitivity 3D mapping required for 21 cm cosmology. MITEoR accomplishes this by using massive baseline redundancy, which enables both automated precision calibration and correlator cost reduction. We demonstrate and quantify the power and robustness of redundancy for scalability and precision. We find that the calibration parameters precisely describe the effect of the instrument upon our measurements, allowing us to form a model that is consistent with χ[superscript 2] per degree of freedom <1.2 for as much as 80 per cent of the observations. We use these results to develop an optimal estimator of calibration parameters using Wiener filtering, and explore the question of how often and how finely in frequency visibilities must be reliably measured to solve for calibration coefficients. The success of MITEoR with its 64 dual-polarization elements bodes well for the more ambitious Hydrogen Epoch of Reionization Array project and other next-generation instruments, which would incorporate many identical or similar technologies