53 research outputs found
Assessment and validation practices in the Vocational Education and Training system: an App for students and practitioners
Assessment and validation are crucial to support learning experiences. In this paper the focus is on the VET system (Vocational Education and Training), which represents an important node in the training of young people in Europe. Within the theoretical framework, in the specific evidence of the passage from a school-based learning to a work-based learning, we will start a reflection on some assessment and validation practices implemented in Europe, within the AppSkill+ work, an Erasmus+ project aimed at developing and testing an app-based tool dedicated to the evaluation and validation, highlighting circularity, triangulation, continuous assessment and digitalization of the processes
Experimental Drainage Device to Reduce Lymphoedema in a Rat Model.
Despite recent advances in pharmacological research and microsurgery, lymphoedema remains an incurable disease that deeply affects quality of life. There is an urgent need for innovative approaches to restore continuous lymph flow in affected tissues. To this end, the efficacy of a subcutaneously implanted draining device in reducing lymphoedema volume in a rat hindlimb lymphoedema model was tested.
A rat model of chronic lymphoedema was developed by surgical removal of popliteal and inguinal lymph nodes, followed by irradiation. The model was characterised by monitoring limb volume via tape measure, skin water content via dielectric constant measurement, and lymphatic drainage via lymphofluoroscopy. After lymphoedema establishment in 16 Wistar rats, a device made of fenestrated tubing equipped with a miniaturised pumping system, was implanted subcutaneously in the affected limb to restore continuous recirculation of interstitial fluid.
Lymphofluoroscopy imaging showed impaired lymphatic drainage following lymphadenectomy and irradiation. Affected limb volume and skin water content increased significantly compared with the untreated limb, with a median (interquartile range) of 3.85 (0.38) cm <sup>3</sup> versus 3.03 (0.43) cm <sup>3</sup> for volume (n = 16, p = .001) and 26.6 (9.1) versus 16.6 (3.7) cm <sup>3</sup> for skin dielectric constant (n = 16, p = .001). Treatment of lymphoedema with the implanted drainage device showed that 5 weeks post-implant excess volume was significantly reduced by 51 ± 18% compared with the pre-implant situation (n = 9 sham group, n = 7 pump group).
Lymphoedema volume in the rat model was significantly reduced by restoring continuous drainage of excess fluid using a novel subcutaneously implanted device, opening the way to the development of an artificial lymphatic vessel
Inferring causation from time series in Earth system sciences
The heart of the scientific enterprise is a rational effort to understand the causes behind the phenomena we observe. In large-scale complex dynamical systems such as the Earth system, real experiments are rarely feasible. However, a rapidly increasing amount of observational and simulated data opens up the use of novel data-driven causal methods beyond the commonly adopted correlation techniques. Here, we give an overview of causal inference frameworks and identify promising generic application cases common in Earth system sciences and beyond. We discuss challenges and initiate the benchmark platform causeme.net to close the gap between method users and developers
Mechanical Characterization of Porcine Corneas
An experimental program has been carried out in order to investigate the mechanical behavior of porcine corneas. We report the results of inflation tests on the whole cornea and uniaxial tests on excised corneal strips, performed on fifty-one fresh porcine eyes. Uniaxial tests have been performed on specimens cut from previously inflated corneas. The cornea behavior is characterized by means of elastic stiffness, measured on both average pressure-apex displacement and average uniaxial stress-strain curves; and by means of transversal contraction coefficient, peak stress, and failure stress measured on uniaxial stress-strain curves. Uniaxial tests performed on excised strips allowed to measure the anisotropy in the corneal stiffness and to compare the stiffness of the cornea with the one of the sclera. Viscous properties of the cornea have been obtained through uniaxial relaxation curves on excised corneal strips. The relevant geometrical parameters have been measured and, with the aid of the elastic thin shell theory, a stress-strain curve has been derived from the average inflation test data and compared with similar data available in the literature. The experimental system has been developed in view of future applications to the mechanical testing of both porcine and human corneas
An in vitro model of the tumor-lymphatic microenvironment with simultaneous transendothelial and luminal flows reveals mechanisms of flow enhanced invasion
The most common cancers, including breast and skin, disseminate initially through the lymphatic system, yet the mechanisms by which tumor cells home towards, enter and interact with the lymphatic endothelium remain poorly understood. Transmural and luminal flows are important biophysical cues of the lymphatic microenvironment that can affect adhesion molecules, growth factors and chemokine expression as well as matrix remodeling, among others. Although microfluidic models are suitable for in vitro reconstruction of highly complex biological systems, the difficult assembly and operation of these systems often only allows a limited throughput. Here we present and characterize a novel flow chamber which recapitulates the lymphatic capillary microenvironment by coupling a standard Boyden chamber setup with a micro-channel and a controlled fluidic environment. The inclusion of luminal and transmural flow renders the model more biologically relevant, combining standard 3D culture techniques with advanced control of mechanical forces that are naturally present within the lymphatic microenvironment. The system can be monitored in real-time, allowing continuous quantification of different parameters of interest, such as cell intravasation and detachment from the endothelium, under varied biomechanical conditions. Moreover, the easy setup permits a medium-high throughput, thereby enabling downstream quantitative analyses. Using this model, we examined the kinetics of tumor cell (MDA-MB-231) invasion and transmigration dynamics across lymphatic endothelium under varying flow conditions. We found that luminal flow indirectly upregulates tumor cell transmigration rate via its effect on lymphatic endothelial cells. Moreover, we showed that the addition of transmural flow further increases intravasation, suggesting that distinct flow-mediated mechanisms regulate tumor cell invasion
- …