946 research outputs found

    Representational capacity of a set of independent neurons

    Full text link
    The capacity with which a system of independent neuron-like units represents a given set of stimuli is studied by calculating the mutual information between the stimuli and the neural responses. Both discrete noiseless and continuous noisy neurons are analyzed. In both cases, the information grows monotonically with the number of neurons considered. Under the assumption that neurons are independent, the mutual information rises linearly from zero, and approaches exponentially its maximum value. We find the dependence of the initial slope on the number of stimuli and on the sparseness of the representation.Comment: 19 pages, 6 figures, Phys. Rev. E, vol 63, 11910 - 11924 (2000

    An associative network with spatially organized connectivity

    Full text link
    We investigate the properties of an autoassociative network of threshold-linear units whose synaptic connectivity is spatially structured and asymmetric. Since the methods of equilibrium statistical mechanics cannot be applied to such a network due to the lack of a Hamiltonian, we approach the problem through a signal-to-noise analysis, that we adapt to spatially organized networks. The conditions are analyzed for the appearance of stable, spatially non-uniform profiles of activity with large overlaps with one of the stored patterns. It is also shown, with simulations and analytic results, that the storage capacity does not decrease much when the connectivity of the network becomes short range. In addition, the method used here enables us to calculate exactly the storage capacity of a randomly connected network with arbitrary degree of dilution.Comment: 27 pages, 6 figures; Accepted for publication in JSTA

    A model problem for the initial-boundary value formulation of Einstein's field equations

    Full text link
    In many numerical implementations of the Cauchy formulation of Einstein's field equations one encounters artificial boundaries which raises the issue of specifying boundary conditions. Such conditions have to be chosen carefully. In particular, they should be compatible with the constraints, yield a well posed initial-boundary value formulation and incorporate some physically desirable properties like, for instance, minimizing reflections of gravitational radiation. Motivated by the problem in General Relativity, we analyze a model problem, consisting of a formulation of Maxwell's equations on a spatially compact region of spacetime with timelike boundaries. The form in which the equations are written is such that their structure is very similar to the Einstein-Christoffel symmetric hyperbolic formulations of Einstein's field equations. For this model problem, we specify a family of Sommerfeld-type constraint-preserving boundary conditions and show that the resulting initial-boundary value formulations are well posed. We expect that these results can be generalized to the Einstein-Christoffel formulations of General Relativity, at least in the case of linearizations about a stationary background.Comment: 25 page

    The Neutron Stars Census

    Get PDF
    The paucity of old isolated accreting neutron stars in ROSAT observations is used to derive a lower limit on the mean velocity of neutron stars at birth. The secular evolution of the population is simulated following the paths of a statistical sample of stars for different values of the initial kick velocity, drawn from an isotropic Gaussian distribution with mean velocity 0≤<V>≤5500\leq < V>\leq 550 kms−1{\rm km s^{-1}}. The spin--down, induced by dipole losses and the interaction with the ambient medium, is tracked together with the dynamical evolution in the Galactic potential, allowing for the determination of the fraction of stars which are, at present, in each of the four possible stages: Ejector, Propeller, Accretor, and Georotator. Taking from the ROSAT All Sky Survey an upper limit of ∼10\sim 10 accreting neutron stars within ∼140\sim 140 pc from the Sun, we infer a lower bound for the mean kick velocity, ≳200−300 \gtrsim 200-300 kms−1,{\rm km s^{-1}}, corresponding to a velocity dispersion σV≳125−190\sigma_V\gtrsim 125-190 km s−1^{-1}. The same conclusion is reached for both a constant magnetic field (B∼1012B\sim 10^{12} G) and a magnetic field decaying exponentially with a timescale ∼109\sim 10^9 yr. Such high velocities are consistent with those derived from radio pulsar observations. Present results, moreover, constrain the fraction of low velocity stars, which could have escaped pulsar statistics, to less than 1%.Comment: 13 pages, 6 PostScript figures, accepted to Ap

    Population synthesis of old neutron stars in the Galaxy

    Get PDF
    The paucity of old isolated accreting neutron stars in ROSAT observations is used to derive a lower limit on the mean velocity of neutron stars at birth. The secular evolution of the population is simulated following the paths of a statistical sample of stars for different values of the initial kick velocity, drawn from an isotropic Gaussian distribution with mean velocity 0≤<V>≤5500\leq < V>\leq 550 kms−1{\rm km s^{-1}}. The spin-down, induced by dipole losses and the interaction with the ambient medium, is tracked together with the dynamical evolution in the Galactic potential, allowing for the determination of the fraction of stars which are, at present, in each of the four possible stages: Ejector, Propeller, Accretor, and Georotator. Taking from the ROSAT All Sky Survey an upper limit of ∼10\sim 10 accreting neutron stars within ∼140\sim 140 pc from the Sun, we infer a lower bound for the mean kick velocity, \ga 200-300 kms−1{\rm km s^{-1}}. The same conclusion is reached for both a constant (B∼1012B\sim 10^{12} G) and a magnetic field decaying exponentially with a timescale ∼109\sim 10^9 yr. Present results, moreover, constrain the fraction of low velocity stars, which could have escaped pulsar statistics, to \la 1%.Comment: 8 pages, 4 PostScript figures, to appear in the proceedings of IAU Symposium 19

    Young close-by neutron stars: the Gould Belt vs. the Galactic disc

    Full text link
    We present new population synthesis calculations of close young neutron stars. In comparison with our previous investigation we use a different neutron star mass spectrum and different initial spatial and velocity distributions. The results confirm that most of ROSAT dim radioquiet isolated neutron stars had their origin in the Gould Belt. Several tens of young neutron stars can be identified in future in ROSAT data at low galactic latitudes and some of them also can be EGRET unidentified sources.Comment: 14 pages, 8 figures, submitted to Ap&SS, corrected some typo
    • …
    corecore