279 research outputs found

    Quasiclassical calculations of BBR-induced depopulation rates and effective lifetimes of Rydberg nS, nP and nD alkali-metal atoms with n < 80

    Full text link
    Rates of depopulation by blackbody radiation (BBR) and effective lifetimes of alkali-metal \textit{nS}, \textit{n}P and \textit{nD} Rydberg states have been calculated in a wide range of principal quantum numbers n80n \le 80 at the ambient temperatures of 77, 300 and 600 K. Quasiclassical formulas were used to calculate the radial matrix elements of the dipole transitions from Rydberg states. Good agreement of our numerical results with the available theoretical and experimental data has been found. We have also obtained simple analytical formulas for estimates of effective lifetimes and BBR-induced depopulation rates, which well agree with the numerical data.Comment: 12 pages, 6 figures, 8 tables. Typo in Eq.16 corrected in V2. Typos in Eq.5 and Eq.9 corrected in V3. Error in calculation of Rb nP_{3/2} effective lifetimes corrected in V4: see new data in Table II and Table VII, Erratum to be published in PR

    Effect of finite detection efficiency on the observation of the dipole-dipole interaction of a few Rydberg atoms

    Full text link
    We have developed a simple analytical model describing multi-atom signals that are measured in experiments on dipole-dipole interaction at resonant collisions of a few Rydberg atoms. It has been shown that finite efficiency of the selective field-ionization detector leads to the mixing up of the spectra of resonant collisions registered for various numbers of Rydberg atoms. The formulas which help to estimate an appropriate mean Rydberg atom number for a given detection efficiency are presented. We have found that a measurement of the relation between the amplitudes of collisional resonances observed in the one- and two-atom signals provides a straightforward determination of the absolute detection efficiency and mean Rydberg atom number. We also performed a testing experiment on resonant collisions in a small excitation volume of a sodium atomic beam. The resonances observed for 1 to 4 detected Rydberg atoms have been analyzed and compared with theory.Comment: 10 pages, 4 figures; equations 8,9,18,19,23,26-31, figures 3 and 4(d), and measurements revised in version

    Langevin Thermostat for Rigid Body Dynamics

    Full text link
    We present a new method for isothermal rigid body simulations using the quaternion representation and Langevin dynamics. It can be combined with the traditional Langevin or gradient (Brownian) dynamics for the translational degrees of freedom to correctly sample the NVT distribution in a simulation of rigid molecules. We propose simple, quasi-symplectic second-order numerical integrators and test their performance on the TIP4P model of water. We also investigate the optimal choice of thermostat parameters.Comment: 15 pages, 13 figures, 1 tabl

    Deterministic single-atom excitation via adiabatic passage and Rydberg blockade

    Full text link
    We propose to use adiabatic rapid passage with a chirped laser pulse in the strong dipole blockade regime to deterministically excite only one Rydberg atom from randomly loaded optical dipole traps or optical lattices. The chirped laser excitation is shown to be insensitive to the random number \textit{N} of the atoms in the traps. Our method overcomes the problem of the N\sqrt {N} dependence of the collective Rabi frequency, which was the main obstacle for deterministic single-atom excitation in the ensembles with unknown \textit{N}, and can be applied for single-atom loading of dipole traps and optical lattices.Comment: 6 pages, 5 figures. Version 5 is expanded and submitted to PRA. Typo in Fig.4 corrected in Version 2. Version 3 and 4 are duplicates of V
    corecore