123 research outputs found
Calculations for antiferrodistortive phase of SrTiO3 perovskite: hybrid density functional study
The electronic and atomic structure of SrTiO3 crystals below the antiferrodistortive phase transition observed at 105 K is calculated using the hybrid B3PW functional as implemented in the ab initio CRYSTAL-2003 computer code. Such a combination of non-local exchange and correlation permits the calculation for the first time of the TiO6 octahedron rotational angle and the ratio c/a of tetragonal lattice constants in excellent agreement with experimental data. The level splitting of the bottom of the conduction band is found to be very small, <1 meV. The predicted phase-transition induced change of the optical gap from indirect to direct is confirmed by experimental photoconductivity data
Dielectric Response in Microscopically Heterogeneous Dielectrics: Example of KTaO_3:Nb
New experimental data on solid solutions of quantum paraelectrics with
KTaO_3:Nb as an example are considered within a framework of a quantum theory
of ferroelectric phase transitions. In order to describe the effect of local
heterogeneities a percolation type theory together with a random field approach
were employed.Comment: 4 figure
EPR studies of manganese centers in SrTiO3: Non-Kramers Mn3+ ions and spin-spin coupled Mn4+ dimers
X- and Q-band electron paramagnetic resonance (EPR) study is reported on the
SrTiO3 single crystals doped with 0.5-at.% MnO. EPR spectra originating from
the S = 2 ground state of Mn3+ ions are shown to belong to the three distinct
types of Jahn-Teller centres. The ordering of the oxygen vacancies due to the
reduction treatment of the samples and consequent formation of oxygen vacancy
associated Mn3+ centres are explained in terms of the localized charge
compensation. The EPR spectra of SrTiO3: Mn crystals show the presence of next
nearest neighbor exchange coupled Mn4+ pairs in the directions.Comment: 17 pages, 8 figure
Electron Spectroscopy and the Electronic Structure of KNbO3: First Principle Calculations
Cataloged from PDF version of article.The electronic structures of KNbO(3)were calculated within the density functional theory, and their evolution was analyzed as the crystal-field symmetry changes from cubic to rhombohedral via tetragonal phase. We carried out electron-energy loss spectroscopy experiments by using synchrotron radiation and compared the results with the theoretical spectra calculated within Density Functional Theory. The dominant role of the NbO(6)octahedra in the formation of the energy spectra of KNbO(3)compound was demonstrated. The anomalous behavior of plasmons in ferroelectrics was exhibited by the function representing the characteristic energy loss in the region of phase transition
Aging in the Relaxor Ferroelectric PMN/PT
The relaxor ferroelectric
(PbMnNbO)(PbTiO), ,
(PMN/PT(90/10)) is found to exhibit several regimes of complicated aging
behavior. Just below the susceptibility peak there is a regime exhibiting
rejuvenation but little memory. At lower temperature, there is a regime with
mainly cumulative aging, expected for simple domain-growth. At still lower
temperature, there is a regime with both rejuvenation and memory, reminiscent
of spin glasses. PMN/PT (88/12) is also found to exhibit some of these aging
regimes. This qualitative aging behavior is reminiscent of that seen in
reentrant ferromagnets, which exhibit a crossover from a domain-growth
ferromagnetic regime into a reentrant spin glass regime at lower temperatures.
These striking parallels suggest a picture of competition in PMN/PT (90/10)
between ferroelectric correlations formed in the domain-growth regime with
glassy correlations formed in the spin glass regime. PMN/PT (90/10) is also
found to exhibit frequency-aging time scaling of the time-dependent part of the
out-of-phase susceptibility for temperatures 260 K and below. The stability of
aging effects to thermal cycles and field perturbations is also reported.Comment: 8 pages RevTeX4, 11 figures; submitted to Phys. Rev.
Evidence for Strain-Induced Ferroelectric Order in Epitaxial Thin-Film KTaO3
In perovskite-structure epitaxial films, it has been theoretically predicted that the polarization and the coherence of polar order can increase with increasing crystallographic strain. Experimental evidence of strain-induced long-range ferroelectric order has not been obtained thus far, posing the fundamental question of whether or not strain can induce the long-range polar order. Here we demonstrate the existence of strain-induced ferroelectric order in quantum paraelectric KTaO3 by combining experimental investigations of epitaxial KTaO3 films and density-functional-theory calculations. The long-range ferroelectric order does exist under a large enough epitaxial strain. We suggest that a region of short-range polar order might appear between paraelectric and ferroelectric states in the strain-temperature phase diagrams.Peer reviewe
d0 Ferromagnetic Interface Between Non-magnetic Perovskites
We use computational and experimental methods to study d0 ferromagnetism at a
charge- imbalanced interface between two perovskites. In SrTiO3/KTaO3
superlattice calculations, the charge imbalance introduces holes in the SrTiO3
layer, inducing a d0 ferromagnetic half-metallic 2D electron gas at the
interface oxygen 2p orbitals. The charge imbalance overrides doping by
vacancies at realistic concentrations. Varying the constituent materials shows
ferromagnetism to be a gen- eral property of hole-type d0 perovskite
interfaces. Atomically sharp epitaxial d0 SrTiO3/KTaO3, SrTiO3 /KNbO3 and
SrTiO3 /NaNbO3 interfaces are found to exhibit ferromagnetic hysteresis at room
temperature. We suggest the behavior is due to high density of states and
exchange coupling at the oxygen t1g band in comparison with the more studied d
band t2g symmetry electron gas.Comment: 5 pages, 5 figure
- …